Histone deacetylase (HDAC) inhibitors can induce various transformed cells to undergo growth arrest and/or death. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor which is in phase I/II clinical trials and has shown antitumor activity in hematologic and solid tumors at doses well tolerated by patients. HDAC is the target for SAHA, but the mechanisms of the consequent induced death of transformed cells are not completely understood. In this study, we report that SAHA induced polyploidy in human colon cancer cell line HCT116 and human breast cancer cell lines, MCF-7, MDA-MB-231, and MBA-MD-468, but not in normal human embryonic fibroblast SW-38 and normal mouse embryonic fibroblasts. The polyploid cells lost the capacity for proliferation and committed to senescence. The induction of polyploidy was more marked in HCT116 p21WAF1-/- or HCT116 p53-/- cells than in wild-type HCT116. The development of senescence of SAHA-induced polyploidy cells was similar in all colon cell lines. The present findings indicate that the HDAC inhibitor could exert antitumor effects by inducing polyploidy, and this effect is more marked in transformed cells with nonfunctioning p21WAF1 or p53 genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-4608 | DOI Listing |
Mol Cancer
January 2025
Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.
View Article and Find Full Text PDFNat Neurosci
January 2025
School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.
Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!