We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1212587PMC
http://dx.doi.org/10.1128/JVI.79.18.12016-12024.2005DOI Listing

Publication Analysis

Top Keywords

soluble car
12
complement regulation
12
soluble
9
virus infection
8
car blocked
8
soluble daf
8
daf daf-fc
8
daf-fc 125-fold-more
8
125-fold-more effective
8
effective inhibiting
8

Similar Publications

The cell death receptor FAS and its ligand (FASLG) play crucial roles in the selection of B cells during the germinal center (GC) reaction. Failure to eliminate potentially harmful B cells via FAS can lead to lymphoproliferation and the development of B cell malignancies. The classic form of follicular lymphoma (FL) is a prototypic GC-derived B cell malignancy, characterized by the t(14;18)(q32;q21)IGH::BCL2 translocation and overexpression of antiapoptotic BCL2.

View Article and Find Full Text PDF

Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation.

Front Immunol

January 2025

Tumor Vaccine and Biotechnology Branch, Office of Cellular Therapy and Human Tissues, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration (U.S. FDA), Silver Spring, MD, United States.

Introduction: CAR-T cell therapy is associated with life-threatening inflammatory toxicities, partly due to the activation and secretion of inflammatory cytokines by bystander myeloid cells (BMCs). However, due to limited clinical data, it is unclear whether CAR-NK cells cause similar toxicities.

Methods: We characterized the soluble factors (SFs) released by activated human CAR-T and CAR-NK cells and assessed their role in BMC activation (BMCA).

View Article and Find Full Text PDF

IL-18 and IL-18BP: A Unique Dyad in Health and Disease.

Int J Mol Sci

December 2024

Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel.

Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a "double-edged sword" cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, highlight the therapeutic potential for IL-18 blockade.

View Article and Find Full Text PDF

Despite recent advances in immunotherapy against B cell malignancies such as BCMA (B cell maturation antigen) and CD19-targeted treatments using soluble T cell-engaging (TCE) antibodies or chimeric antigen receptor T cells (CAR-T), there is still an important number of patients experiencing refractory/relapsed (R/R) disease. Approaches to avoid tumor-intrinsic mechanisms of resistance such as immune pressure-mediated antigen downmodulation, are being broadly investigated. These strategies include BCMA/CD19 dual-targeting therapies, which may be of particular interest to patients with B cell lymphoma and multiple myeloma, where a specific double-positive immature subpopulation is commonly associated with poor prognosis and poor response to current treatments.

View Article and Find Full Text PDF

Background: Modular (universal) CAR T-platforms were developed to combat the limitations of traditional CAR-T therapy, allowing for multiple targeting of tumor-associated antigens and the ability to control CAR-T cell activity. The modular CAR-T platform consists of a universal receptor (signaling module) that recognizes an adapter molecule on the soluble module, which is responsible for antigen recognition. Multiple platforms have been developed over the last 12 years, and some of them have entered the clinical trial phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!