Methylmercury inhibits type II 5'-deiodinase activity in NB41A3 neuroblastoma cells.

Toxicol Lett

Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Miyagi, Japan.

Published: February 2006

Methylmercury (MeHg) is a well-known neurotoxicant and prenatal exposure to MeHg results in severe brain damage. Since MeHg has a high affinity for thiol groups, we sought to determine whether MeHg inhibited type II iodothyronine deiodinase (D2) activity, by which prohormone thyroxine (T4) is converted to active thyroid hormone, 3,5,3'-triiodothyronine (T3) in the brain, using NB41A3 mouse neuroblastoma cells. In MeHg-treated cells, D2 activity was inhibited in a dose- and time-dependent manner; relatively low concentrations of MeHg (30 nM) inhibited D2. Kinetic analysis using a double reciplocal plot of D2 activity revealed competitive inhibition by MeHg. DTT protected D2 from MeHg when cells were incubated with both MeHg and DTT or when MeHg was added to the assay buffer containing DTT and cell sonicates from untreated cells. Removal of MeHg from culture medium did not recover D2 activity. These results demonstrate that MeHg inhibited D2 activity in NB41A3 cells and the selenocysteine in the catalytic subunit of D2 may be involved in the inhibitory action of MeHg. Further our results suggest that T3 deficiency due to D2 inhibition in the brain may be involved in the neurotoxicity of MeHg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2005.08.001DOI Listing

Publication Analysis

Top Keywords

mehg
13
mehg inhibited
12
activity nb41a3
8
neuroblastoma cells
8
mehg dtt
8
activity
6
cells
6
methylmercury inhibits
4
inhibits type
4
type 5'-deiodinase
4

Similar Publications

Organic foliar spraying: A method that synchronously reduces mercury methylation in soil and accumulation in vegetable.

Environ Pollut

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang 551400, China.

Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment.

View Article and Find Full Text PDF
Article Synopsis
  • Minamata disease is a severe neurological disorder caused by methylmercury (MeHg) poisoning, identified in Japan in 1956, and previously thought to be linked to elevated selenium (Se) levels in patients.
  • Research showed both mercury and selenium were present in historical samples from Minamata Bay, indicating that Se also contaminated the area and accumulated in patients' organs.
  • The study's findings, including high Hg/Se molar ratios in brain tissue, help explain the neurological damage seen in patients and emphasize the dangers of consuming MeHg-contaminated seafood.
View Article and Find Full Text PDF

Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.

View Article and Find Full Text PDF

Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.

View Article and Find Full Text PDF

Microplastics aggravate the adverse effects of methylmercury than inorganic mercury on zebrafish (Danio rerio).

Environ Pollut

December 2024

Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, And Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China. Electronic address:

The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!