This study was initiated to characterize a small Xylella fastidiosa (X. fastidiosa) plasmid and attempt to create a X. fastidosa/Escherichia coli shuttle vector that was stable in planta. Restriction enzyme analysis of a 1.3kb plasmid DNA from a grape-infecting strain of X. fastidiosa (UCLA) revealed the presence of three similar, but genetically distinct, plasmids, pUCLAs. Evidence that suggests the pUCLA plasmids replicate via a rolling-circle (RC) mechanism include: (i) the presence of ssDNA in X. fastidiosa cells; (ii) the presence of conserved motifs in the predicted ORF1 that are typical of initiator (Rep) proteins associated with RC replication; (iii) high amino acid identity between the putative Rep proteins of pUCLAs and Pf3, a filamentous bacteriophage of Pseudomonas aeruginosa that replicates by a RC mechanism; and (iv) the presence of a putative origin of replication upstream of ORF1 that has the potential to form secondary hairpin structures. One DNA motif present in pUCLA shared sequence similarity to known nicking sites in the origins of replication of other RC plasmids and phages. The shuttle vector, pXF001, successfully transformed grape X. fastidiosa strains and was found to be present as autonomous, structurally unchanged DNA molecules in X. fastidiosa. However, pXF001 was not stably maintained in X. fastidiosa without antibiotic selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plasmid.2005.06.004 | DOI Listing |
Plants (Basel)
January 2025
Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari-Aldo Moro, Via Giovanni Amendola 165/A, 70126 Bari, Italy.
subsp. (), a quarantine pathogen in the European Union, severely threatens Mediterranean olive production, especially in southern Italy, where Olive Quick Decline Syndrome (OQDS) has devastated Apulian olive groves. This study addresses the urgent need to identify resistant olive genotypes by monitoring 16 potentially tolerant genotypes over six years, assessing symptom severity and bacterial load.
View Article and Find Full Text PDFAdv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFSmall Methods
January 2025
NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, I-56127, Italy.
A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈10 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface.
View Article and Find Full Text PDFMicrobiol Res
January 2025
International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:
Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Chemistry, University College Cork, T12 YN60 Cork, Ireland.
is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!