The changing cellular environments of hematopoiesis in human development in utero.

Exp Hematol

INSERM U506, Hôpital Paul Brousse, Villejuif, France.

Published: September 2005

The hematopoietic system is indispensable from the earliest stages of development and adapts to the rapidly changing anatomy of the embryo and fetus; this takes place in such different anatomic locations as the yolk sac blood island, hepatic parenchyme, aorta-gonads-mesonephros paravascular mesenchyme, and bone marrow primary logette. We herein summarize our investigation of these serial blood-forming events in the human embryo and fetus. The access to early stages of human development, availability of a large panoply of molecular markers for human blood cell lineages, and recent development of robust assays for the earliest human hematopoietic stem cells have allowed us to gain relatively clear insight into the developmental sequence that underlies the ontogeny of human blood cells. Conversely, the control exerted by these diverse cellular environments on the emergence of human hematopoietic cells remains elusive, as is the case in animal models. We nonetheless present preliminary attempts to decipher the structure and molecular characteristics of the distinct cellular "niches" in which blood cells are produced during human gestation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2005.06.025DOI Listing

Publication Analysis

Top Keywords

cellular environments
8
human
8
human development
8
embryo fetus
8
human blood
8
human hematopoietic
8
blood cells
8
changing cellular
4
environments hematopoiesis
4
hematopoiesis human
4

Similar Publications

Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.

View Article and Find Full Text PDF

In general, edge computing networks are based on a distributed computing environment and hence, present some difficulties to obtain an appropriate load balancing, especially under dynamic workload and limited resources. The conventional approaches of Load balancing like Round-Robin and Threshold-based load balancing fails in scalability and flexibility issues when applied to highly variable edge environments. To solve the problem of how to achieve steady-state load balance and provide dynamic adaption to edge networks, this paper proposes a new framework that using PCA and MDP.

View Article and Find Full Text PDF

Shaping epithelial tissues by stem cell mechanics in development and cancer.

Nat Rev Mol Cell Biol

January 2025

Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.

Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function.

View Article and Find Full Text PDF

The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox initiators. Initial studies in chemical models required an oxygen-free environment for efficient coupling and showed very poor activation when using a redox initiator.

View Article and Find Full Text PDF

Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy.

Acta Pharmacol Sin

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!