Three recombinant apoE isoforms fused with an amino-terminal extension of 43 amino acids were produced in a heterologous expression system in E. coli. Their state of association in aqueous phase was analyzed by size-exclusion liquid chromatography, sedimentation velocity and sedimentation equilibrium experiments. By liquid chromatography, all three isoforms consisted of three major species with Stokes radii of 4.0, 5.0 and 6.6 nm. Sedimentation velocity confirmed the presence of monomers, dimers and tetramers as major species of each isoform. The association schemes established by sedimentation equilibrium experiments corresponded to monomer-dimer-tetramer-octamer for apoE2, monomer-dimer-tetramer for apoE3 and monomer-dimer-tetramer-octamer for apoE4. Each of the three isoforms exhibits a distinct self-association pattern. The apolipoprotein multi-domain structure was mapped by limited proteolysis with trypsin, chymotrypsin, elastase, subtilisin and Staphylococcus aureus V8 protease. All five enzymes produced stable intermediates during the degradation of the three apoE isoforms, as described for plasma apoE3. The recombinant apoE isoforms, thus, consist of N- and C-terminal domains. The presence of the fusion peptide did not appear to alter the apolipoprotein tertiary organization. However, a 30 kDa amino-terminal fragment appeared during the degradation of the recombinant apoE isoforms resulting from cleavage in the 273-278 region. This region, not accessible in plasma apoE3, results from a different conformation of the C-terminal domain in the recombinant isoforms. A specific pattern for the apoE4 C-terminal domain was observed during the proteolysis. The region 230-260 in apoE4, in contrast to that of apoE3 and apoE2, was not accessible to proteases, probably due to the existence of a longer helix in this region of apoE4 stabilized by an interdomain interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2005.07.010 | DOI Listing |
J Atheroscler Thromb
January 2025
Apolipoprotein E (apoE) is a key apoprotein in lipid transport and is susceptible to genetic mutations. ApoE variants have been studied for four decades and more than a hundred of them have been reported. This paper presents an up-to-date review of the function and structure of apoE in lipid metabolism, the E2, E3, and E4 isoforms, the APOE gene, and various pathologies, such as familial type III hyperlipidemia and lipoprotein glomerulopathy, caused by apoE variants.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain.
: Alzheimer's dementia is a progressive neurodegenerative disease that affects memory abilities due to genetic and environmental factors. A well-known gene that influences the risk of Alzheimer's disease is the apolipoprotein E (APOE) gene. The APOE gene is involved in the production of a protein that helps transport cholesterol and other types of fat in the bloodstream.
View Article and Find Full Text PDFBiomedicines
November 2024
REMAR Group, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain.
Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control.
View Article and Find Full Text PDFIn the central nervous system, apolipoprotein (APO) E-containing high-density lipoprotein (HDL)-like particles mediate the transport of glial-derived cholesterol to neurons, which is essential for neuronal membrane remodeling and maintenance of the myelin sheath. Despite this, the role of HDL-like cholesterol trafficking on Alzheimer's disease (AD) pathogenesis remains poorly understood. We aimed to examine cholesterol transport via HDL-like particles in cerebrospinal fluid (CSF) of AD patients compared to control individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!