We investigated the antihyperglycemic effect of p-methoxycinnamic acid (p-MCA), a cinnamic acid derivative, on plasma glucose and insulin concentrations, activities of hepatic glucose-regulating enzymes and hepatic glycogen content in normal and streptozotocin (STZ)-induced diabetic rats. p-MCA (10-100 mg/kg, PO) dose-dependently decreased plasma glucose concentration in both normal and diabetic rats in the oral glucose tolerance test. To investigate the chronic effects of p-MCA on glucose metabolism, p-MCA (40 mg/kg, PO) was administered to normal and diabetic rats once a day for 4 weeks. p-MCA reduced plasma glucose concentration in diabetic rats, which was observed during the 4-week study. However, p-MCA treatment did not change plasma glucose concentrations in normal rats during the 4-week study. p-MCA also reduced the excessive activities of hepatic glucose-6-phosphatase, hepatic hexokinase, glucokinase and phosphofructokinase in diabetic rats and increased hepatic glycogen in these rats. In p-MCA-treated normal rats, there were no changes in the activities of hepatic glucose-regulating enzymes, hepatic glycogen and glucose-6-phosphate. Our findings suggested that p-MCA exert its antihyperglycemic effect by increasing insulin secretion and glycolysis, and by decreasing gluconeogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2005.04.073 | DOI Listing |
Methods Cell Biol
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
Background: It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D).
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFNutrients
January 2025
Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!