Attention-deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder of childhood, which is frequently treated with methylphenidate. The short-term response to treatment with methylphenidate is a substantial decrease in dopamine transporter density, with improvement in neuropsychological tests. In this study, single-photon emission computed tomography was used to investigate possible long-term alterations in the cerebral dopamine system after cessation of treatment with methylphenidate in five children with ADHD. Three months after initiation of treatment with methylphenidate, a reduction of the dopamine transporter in the striatal system was observed. Methylphenidate was administered for a period of 9 to 20 months. Follow-up with single-photon emission computed tomography after withdrawal of methylphenidate medication disclosed an increase of dopamine transporter activity comparable with pretreatment values. The observed upregulation of dopamine transporter activity might support the assumption that methylphenidate does not lead to permanent damage of the nigrostriatal dopaminergic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pediatrneurol.2005.04.008 | DOI Listing |
We examined DA activity in the medial prefrontal cortex (mPFC) and nucleus accumbens core (NAcc) in two Different Rat Models of Attention-Deficit/Hyperactivity Disorder: Spontaneously Hypertensive Rats (SHR) Versus Lphn3 Knockout Rats. We examined baseline stimulation-evoked phasic DA release, half-life, and DA autoreceptor (DAR) functioning in the mPFC and NAcc, as well as the response to nomifensine (10 mg/kg, IP), a DA transporter (DAT) blocker, on these measures in the NAcc. Both rat models were hypodopaminergic, with notable regional and mechanistic differences.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
Parkinson disease (PD) is a multisystem disorder marked by progressive dopaminergic neuronal degeneration in the substantia nigra, as well as nondopaminergic systems. Our aim was to investigate longitudinal changes in -(3-[F]fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (F-FP-CIT) binding at the putamen, substantia nigra, and raphe nuclei in PD. This retrospective cohort study enrolled 127 patients with PD, who underwent F-FP-CIT PET scans twice or more, and 71 age- and sex-matched healthy controls.
View Article and Find Full Text PDFAsia Ocean J Nucl Med Biol
January 2025
Department of Radiology, Fujita Health University School of Medicine, Aichi, Japan.
Objectives: Sudden death in multiple system atrophy (MSA) is caused by decreased serotonergic innervation, but there is no routine test method for this decrease. In addition to dopamine transporters, iodine-123-labelled N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (I-FP-CIT) binds serotonin transporters (SERTs). We noted a binding potential to quantify the total quantity of I-FP-CIT binding to its receptors.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
This is the first study aimed to investigate the innervation of the internal genital organs in 12-week-old female pig foetuses using single and double-labelling immunofluorescence methods. Immunostaining for protein gene product 9.5 (PGP, general neural marker) revealed that the most numerous PGP-positive nerve fibres were found in the mesenchyme of the uterovaginal canal height.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!