In order to survive, animals must acquire information about the reward value of stimuli in their environment. This process partly depends on the ability of the organism to make associations between the environmental context and the internal representation of value. While this type of learning probably evolved in order to promote behaviors that increase fitness (e.g., ingestive and sexual behavior), neuropsychological research utilizing addictive drugs, which are potent artificial reinforcers, has led to a deeper understanding of reinforcement mechanisms. Through these associations, sensory cues can acquire emotional salience and motivational properties. Exposure to drug-related cues in human addicts results in drug craving and localized activation of central circuits that are known to mediate cue-induced reinstatement of drug-seeking behavior in animal models of relapse. Similar regional activation patterns occur in humans in response to cues associated with foods. Furthermore, drug- and food-related cues not only activate common neuroanatomical regions but also result in similar activity-regulated gene expression programs within these shared areas. Here we discuss recent studies from our laboratory that investigate gene expression patterns elicited by exposure to palatable food- or drug-related cues. These studies suggest that the central nervous system stores and utilizes information about 'natural' and drug reinforcers in similar ways, both neuroanatomically and biochemically. These considerations may have important implications for the pharmacological and cognitive-behavioral treatments of substance use disorders, addiction, eating disorders, and obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2005.06.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!