The paper reports the results of an investigation aimed at evaluating the performances of a periodic biofilter (SBBR) for treating municipal wastewater. The investigation was carried out at laboratory scale on real primary effluent coming from a municipal wastewater treatment plant located in Southern Italy. The SBBR was designed for carbon and nitrogen removal through one single stage. The results have shown that even at maximum organic load (i.e., 7 kg COD/m3.d), the COD in the effluent was lower than 60 mg/L. TKN removal efficiencies resulted high (i.e. 90-95%) up to an organic load of 5.7 kg COD/m3.d corresponding to a nitrogen load of 0.8 kg TKN/m3.d. NO3-N concentration in the treated effluent was lesser than 6 mg/L although in the SBBR treatment cycle no anoxic phase was scheduled. This indicated that denitrification extensively took place in the biofilter. The process was characterized by high suspended solids removal (about 90%) and by a negligible sludge production (lower than 0.01 kgVSS/kgCODremoved). In the SBBR, biomass grew as granules and was characterised by different measurements (biomass concentration, cellular protein and biomass density). Biomass density resulted very high, i.e. 200 gTSS/Lbiomass, and this permitted to achieve a biomass concentration such high as 40 gTSS/Lbed. Such biomass concentration did not cause any decrease of biomass metabolic activity as proved by its total protein content (29% of organic matter) and maximum oxygen uptake rate value (i.e. 50 mgO2/gVSS h).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adic.200590051 | DOI Listing |
Water Sci Technol
January 2025
Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system.
View Article and Find Full Text PDFWater Sci Technol
January 2025
China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.
View Article and Find Full Text PDFWater Sci Technol
January 2025
The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.
The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.
View Article and Find Full Text PDFEnviron Res
January 2025
The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China.
Organic contaminants (OCs) are released into the environment through effluent discharges from wastewater treatment plants (WWTP), posing risks to environment health. However, emissions from various source, particularly large-scale investigations across different industries, remain poorly understood. Based on both sampling and statistical data, this study estimates the emissions of 10 OCs, including perfluorooctane acid (PFOA), perfluorooctane sulfonate (PFOS), 4-nonylphenol (4-NP), 4-tert-octylphenol (4-t-OP), dibutyl phthalate (DBP), di-iso-butyl phthalate (DIBP), dimethyl phthalate (DMP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and bisphenol A (BPA), from the effluents of 160 factories across 8 industries, 541 municipal wastewater treatment plants (MWWTPs), and 8 waste treatment plants (WTPs) in the upper Yangtze River Basin.
View Article and Find Full Text PDFJ Environ Manage
January 2025
CALAGUA - Unitat Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, Burjassot, Valencia, 46100, Spain.
Most microplastics (MPs) end up in the biosolids produced in wastewater treatment plants (WWTPs) and can pose contamination risks when the biosolids are applied to agriculture. This study evaluated the impact of mesophilic anaerobic digestion on the fate of MPs in WWTP sludge. For this, two laboratory-scale anaerobic digesters were operated in parallel, consisting of a continuous stirred tank reactor (CSTR) and a membrane bioreactor (AnMBR) equipped with an ultrafiltration membrane to decouple the hydraulic and sludge retention times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!