The evolutionarily conserved febrile response has been associated with improved survival during infection in endothermic and ectothermic species although its protective mechanism of action is not fully understood. Temperatures within the range of physiologic fever influence multiple parameters of the immune response including lymphocyte proliferation and cytotoxic activity, neutrophil and dendritic cell migration, and production or bioactivity of proinflammatory cytokines. This review focuses on the emerging role of fever-range thermal stress in promoting lymphocyte trafficking to secondary lymphoid organs that are major sites for launching effective immune responses during infection or inflammation. Specific emphasis will be on the molecular basis of thermal control of lymphocyte-endothelial adhesion, a critical checkpoint controlling lymphocyte extravasation, as well as the contribution of interleukin-6 (IL-6) trans-signaling to thermal activities. New results are presented indicating that thermal stimulation of lymphocyte homing potential is evident in evolutionarily distant endothermic vertebrate species. These observations support the view that the evolutionarily conserved febrile response contributes to immune protection and host survival by amplifying lymphocyte access to peripheral lymphoid organs.

Download full-text PDF

Source
http://dx.doi.org/10.1081/imm-200064501DOI Listing

Publication Analysis

Top Keywords

fever-range thermal
8
thermal stress
8
lymphocyte-endothelial adhesion
8
lymphocyte trafficking
8
evolutionarily conserved
8
conserved febrile
8
febrile response
8
lymphoid organs
8
lymphocyte
6
thermal
5

Similar Publications

Progression of various cancers and autoimmune diseases is associated with changes in systemic or local tissue temperatures, which may impact current therapies. The role of fever and acute inflammation-range temperatures on the stability and activity of antibodies relevant for cancers and autoimmunity is unknown. To produce molecular dynamics (MD) trajectories of immune complexes at relevant temperatures, we used the Research Collaboratory for Structural Bioinformatics (RCSB) database to identify 50 antibody:antigen complexes of interest, in addition to single antibodies and antigens, and deployed Groningen Machine for Chemical Simulations (GROMACS) to prepare and run the structures at different temperatures for 100-500 ns, in single or multiple random seeds.

View Article and Find Full Text PDF

Fever-Range Hyperthermia Promotes Macrophage Polarization towards Regulatory Phenotype M2b.

Int J Mol Sci

December 2023

Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland.

Fever-range hyperthermia (FRH) is utilized in chronic disease treatment and serves as a model for fever's thermal component investigation. Macrophages, highly susceptible to heat, play a pivotal role in various functions determined by their polarization state. However, it is not well recognized whether this process can be modulated by FRH.

View Article and Find Full Text PDF

Fever range thermal therapy in sepsis.

Am J Med Sci

June 2023

Department of Basic Medical Science, Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

View Article and Find Full Text PDF

Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates.

View Article and Find Full Text PDF

Fever-like hyperthermia is known to stimulate innate and adaptive immune responses. Hyperthermia-induced immune stimulation is also accompanied with, and likely conditioned by, changes in the cell metabolism and, in particular, mitochondrial metabolism is now recognized to play a pivotal role in this context, both as energy supplier and as signaling platform. In this study we asked if challenging human monocyte-derived dendritic cells with a relatively short-time thermal shock in the fever-range, typically observed in humans, caused alterations in the mitochondrial oxidative metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!