Proneuronal basic helix-loop-helix (bHLH) transcription factor, neurogenin 1 (Ngn1), regulates neuronal differentiation during development of the cerebral cortex. Akt mediates proneuronal bHLH protein function to promote neuronal differentiation. Here, we show that recombinant human erythropoietin (rhEPO) significantly increased Akt activity and Ngn1 mRNA levels in neural progenitor cells derived from the subventricular zone (SVZ) of adult rat, which was coincident with increases of neural progenitor cell proliferation, differentiation, and neurite outgrowth. Inhibition of Akt activity by the phosphatidylinositol 3-kinase/Akt (PI3K/Akt) inhibitor, LY294002, abolished rhEPO-increased Ngn1 mRNA levels and the effects of rhEPO on neural progenitor cells. In addition, reducing expression of endogenous Ngn1 by means of short-interfering RNA (siRNA) blocked rhEPO-enhanced neuronal differentiation and neurite outgrowth but not rhEPO-increased proliferation. Furthermore, treatment of stroke rat with rhEPO significantly increased Ngn1 mRNA levels in SVZ cells. These data suggest that rhEPO acts as an extracellular molecule that activates the PI3K/Akt pathway, which enhances adult neural progenitor cell proliferation, differentiation, and neurite outgrowth, and Ngn1 is required for Akt-mediated neuronal differentiation and neurite outgrowth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jcbfm.9600215 | DOI Listing |
Mol Neurobiol
January 2025
Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
AUTS2 syndrome is characterized by intellectual disability and microcephaly, and is often associated with autism spectrum disorder, but the underlying mechanisms, particularly concerning microcephaly, remain incompletely understood. Here, we analyze mice mutated for the transcriptional regulator AUTS2, which recapitulate microcephaly. Their brains exhibit reduced division of intermediate progenitor cells (IPCs), leading to fewer neurons and decreased thickness in the upper-layer cortex.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Amity Institute of Pharmacy, Amity University Haryana Chemistry Gurugram India.
Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.
Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.
J Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!