The novel LTR retrotransposon Tyl6 was detected in the genome of the dimorphic fungus Yarrowia lipolytica. Sequence analysis revealed that this element is related to the well-known Ty3 element of Saccharomyces cerevisiae and, especially, to the recently described Tse3 retrotransposon of Saccharomyces exiguus and to the del1-like plant retrotransposons. Tyl6 is 5108 bp long, is flanked by two identical long terminal repeats (LTR), each of 276 bp, and its ORFs are separated by a -1 frameshift. Both ORFs are intact and deduced translation products display a significant similarity with those of previously described Ty3/gypsy retrotransposons. Distribution of Tyl6 among Y. lipolytica strains of different origins was also analysed. A single copy of the novel retrotransposon is present in some commonly used laboratory strains, which are derivatives of the wild-type isolate YB423-12, whereas other strains of independent origin are devoid of Ty16. No solo LTR of Tyl6 was detected in the analysed strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1287 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
January 2025
Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China. Electronic address:
The zig-zag eel exhibits both sexual dimorphism and sex reversal, making it crucial to understand the mechanisms of sex determination and differentiation. Additionally, the wild populations of the zig-zag eel are significantly declining, emphasizing the need for urgent conservation efforts. In this study, we identified 7 Dmrt, 62 HMG-box, and 73 TGF-β family members in the zig-zag eel genome.
View Article and Find Full Text PDFGene
January 2025
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820 USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61820 USA. Electronic address:
The alternative splicing of a gene results in distinct transcript isoforms that can result in proteins that differ in function. Alternative splicing processes are prevalent in the brain, have varying incidence across brain regions, and can present sexual dimorphism. Exposure to opiates and other substances of abuse can also alter the type and incidence of the splicing process and the relative abundance of the isoforms produced.
View Article and Find Full Text PDFScience
January 2025
Department of Evolution and Ecology, University of California, Davis, CA, USA.
Comp Biochem Physiol Part D Genomics Proteomics
December 2024
MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China. Electronic address:
The Sox family genes, as a group of transcription factors, are widely expressed in vertebrates and play a critical role in reproduction and development. The present study reported that 26 sox genes were identified from the genome and transcriptome of P. leopardus.
View Article and Find Full Text PDFBMC Genomics
December 2024
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyulu, Hongshan District, Wuhan, 430079, China.
Background: Nuptial pads, a typical sexually dimorphic trait in anurans, are located on the first digit of the male forelimb in Rana chensinensis and exhibit morphological changes synchronized with breeding cycles. However, the genetic mechanisms underlying its formation and seasonal changes remain poorly understood.
Results: To identify genes and biological processes associated with the development and seasonal variations of nuptial pads, we conducted a comprehensive transcriptome analysis on nuptial pads and hind toe skin across both sexes at different breeding periods in R.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!