Purpose: Oxygen free radicals are considered to be important components involved in the pathophysiological tissue alterations observed during ischemia/reperfusion (I/R). Based on the potent antioxidant effects of melatonin, we investigated the putative protective role of melatonin against I/R-induced oxidative remote organ injury.

Methods: Wistar albino rats were subjected to 1 h of infrarenal aortic occlusion followed by 1 h of reperfusion to induce I/R damage. Melatonin (10 mg/kg, s.c.) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period (I/R + Mel or I/R groups). At the end of the reperfusion periods, the rats were decapitated and hepatic, ileal, and lung tissue samples were removed for biochemical analyses of: malondialdehyde (MDA), an end product of lipid peroxidation; the glutathione (GSH) levels, a key antioxidant; and the myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. The serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured to evaluate the liver function. The wet/dry lung weight ratio was calculated to determine the extent of lung damage.

Results: The results revealed the occurrence of I/R-induced oxidative organ damage, as evidenced by increases in the MDA and MPO activity, and a decrease in GSH. Furthermore the AST, ALT levels, and the wet/dry lung weight ratio, which all increased due to I/R, were all observed to decrease after melatonin treatment.

Conclusion: Since melatonin administration reversed these oxidant responses, it seems likely that melatonin has a protective effect against oxidative organ damage induced by I/R.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00595-005-3027-2DOI Listing

Publication Analysis

Top Keywords

oxidative remote
8
remote organ
8
i/r-induced oxidative
8
mpo activity
8
alt levels
8
wet/dry lung
8
lung weight
8
weight ratio
8
oxidative organ
8
organ damage
8

Similar Publications

Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.

View Article and Find Full Text PDF

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

Spatiotemporal estimates of anthropogenic NO emissions across China during 2015-2022 using a deep learning model.

J Hazard Mater

January 2025

Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, PR China. Electronic address:

As one of the significant air pollutants, nitrogen oxides (NO = NO + NO) not only pose a great threat to human health, but also contribute to the formation of secondary pollutants such as ozone and nitrate particles. Due to substantial uncertainties in bottom-up emission inventories, simulated concentrations of air pollutants using GEOS-Chem model often largely biased from those of ground-level observations. To address this issue, we developed a new deep learning model to simulate the inverse process of the GEOS-Chem model.

View Article and Find Full Text PDF

Hydrogen spillover, particularly when involving "interparticle" hydrogen spillover, offers a unique opportunity to enhance catalytic efficiency by remote activation of surface acidity. Building on this concept, this study aims to investigate physically mixed alumina-supported platinum nanoparticles (Pt/AlO) and zirconia-supported tungsten oxide (WO/ZrO) in promoting the direct synthesis of cumene from benzene and propane at 300 °C. The reaction with Pt/AlO alone afforded propylene as the only product, indicating the successive reaction route of Pt-catalyzed dehydrogenation of propane, followed by acid-catalyzed alkylation.

View Article and Find Full Text PDF

Purpose Of Review: The exposome refers to the total environmental exposures a person encounters throughout life, and its relationship with human health is increasingly studied. This non-systematic review focuses on recent research investigating the effects of environmental factors-such as air pollution, noise, greenspace, neighborhood walkability, and metallic pollutants-on atherosclerosis, a major cause of cardiovascular disease.

Recent Findings: Studies show that long-term exposure to airborne particulate matter can impair endothelial function and elevate adhesion molecule levels, leading to vascular damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!