Industrial enzymes are often produced by filamentous fungi in fed-batch cultivations. During cultivation, the different morphological forms displayed by the fungi have an impact on the overall production. The morphology of a recombinant lipase producing Aspergillus oryzae strain was investigated during fed-batch cultivations. During the exponential batch phase of the fed-batch cultivations, the average hyphal length increased as did the number of tips per hyphal element. Most striking was the finding that the diameter of the hyphal elements increased with an average factor of 1.5 during the batch phase from 2.8-2.9 up to 4.0-4.4 mum. The diameter of the hyphal elements remained constant, around 4 mum, after the feed was started. However, the diameter of the immediate hyphal tip, where the enzyme secretion is thought to take place, increased dramatically with up to a factor 2.5 during the feeding period. The expression of the recombinant lipase was induced by the feeding with maltose, and an increase in lipase activity was seen in parallel to a swelling of the tips. The results indicate that the two events are linked as a return to normal growth was observed upon cessation of production due to oxygen limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-005-0085-8 | DOI Listing |
J Biotechnol
January 2025
Institute of Molecular Biotechnology (IMBT), BOKU University, Vienna, Austria.
Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells.
View Article and Find Full Text PDFJ Biotechnol
December 2024
School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:
We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.
View Article and Find Full Text PDFPrep Biochem Biotechnol
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
This study explored the impact of sodium acetate (Na-acetate) impact on lipid, carotenoid, and β-carotene production by the newly isolated strain . Batch and fed-batch bioreactor cultures were employed to optimize growth conditions and product yields. fed with Na-acetate in the yeast medium was evaluated in the batch bioreactor culture.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
December 2024
Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria.
Background: Biorefineries usually focus on the production of low-value commodities, such as bioethanol, platform chemicals or single cell protein. Shifting production to bioactive compounds, such as antimicrobial peptides, could provide an opportunity to increase the economic viability of biorefineries.
Results: Recombinant production of the antimicrobial peptide pediocin PA-1 in Corynebacterium glutamicum was transferred from yeast extract-based media to minimal media based on lignocellulosic spent sulfite liquor.
Metab Eng
January 2025
Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China. Electronic address:
N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered Escherichia coli strains to enhance NMS production from L-tryptophan using whole-cell catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!