The yeast plasma-membrane potassium channel, Tok1p, is a voltage-dependent outward rectifier, the gating and steady-state conductance of which are conspicuously modulated by extracellular [K(+)] ([K(+)](o)). Activation is slow at high [K(+)](o), showing time constants (tau(a)) of approximately 90 ms when [K(+)](o) is 150 mM (depolarizing step to +100 mV), and inactivation is weak (<30%) during sustained depolarization. Lowering [K(+)](o) accelerates activation, increases peak current, and enhances inactivation, so that at 15 mM [K(+)](o) tau(a) is less than 50 ms and inactivation suppresses approximately 60% of peak current. Two negative residues, Asp292 and Asp426, near the mouth of the assembled channel, modulate both kinetics and conductance of the channel. Charge neutralization in the mutant Asp292Asn allows fast activation (tau(a) approximately 20 ms) at high [K(+)](o), peak currents diminishing with decreasing [K(+)](o), and fast, nearly complete, inactivation. The voltage dependence of tau(a) persists in the mutant, but the [K(+)](o) dependence almost disappears. Similar but smaller changes are seen in the Asp426Asn mutant, implying that pore geometry in the functional channel has twofold, not fourfold, symmetry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-005-1418-2DOI Listing

Publication Analysis

Top Keywords

potassium channel
8
channel tok1p
8
yeast potassium
4
tok1p external
4
external ring
4
ring aspartate
4
aspartate residues
4
residues modulates
4
modulates gating
4
gating conductance
4

Similar Publications

Single Na- and K-Ion-Conducting Sulfonated -NH-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States.

Highly ion-conductive solid electrolytes of nonlithium ions (sodium or potassium ions) are necessary for pursuing a more cost-effective and sustainable energy storage. Here, two classes of sulfonated -NH-linked covalent organic frameworks (COFs), specifically designed for sodium or potassium ion conduction (named i-COF-2 (Na or K) and i-COF-3 (Na or K)), were synthesized through a straightforward, one-step process using affordable starting materials. Remarkably, these COFs demonstrate high ionic conductivity at room temperature─3.

View Article and Find Full Text PDF

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified.

View Article and Find Full Text PDF

Dissecting Causal Relationships Between Antihypertensive Drug, Gut Microbiota, and Type 2 Diabetes Mellitus and Its Complications: A Mendelian Randomization Study.

J Clin Hypertens (Greenwich)

January 2025

Department of Cardiology, Hypertension Research Laboratory, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Limited research has investigated the impact of antihypertensive medications on type 2 diabetes mellitus (T2DM) and whether gut microbiome (GM) mediates this association. Thus, we conducted a two-sample Mendelian randomization (MR) analysis to estimate the potential impact of various antihypertensive drug target genes on T2DM and its complications. Genetic instruments for the expression of antihypertensive drug target genes were identified with expression quantitative trait loci (eQTL) in blood, which should be associated with systolic blood pressure (SBP).

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

Liddle syndrome, a rare form of monogenic hypertension, poses significant diagnostic and therapeutic challenges due to its phenotypic variability and the need for genetic testing. The rarity of the condition, coupled with the limited availability of first-line treatments such as epithelial sodium channel (ENaC) blockers, makes this case report particularly urgent and novel, highlighting alternative management strategies in resource-limited settings. The aim of this case report was to present the diagnostic challenges, therapeutic strategies, and clinical outcomes of a patient with Liddle syndrome who did not have access to ENaC blockers, emphasizing the importance of early recognition and personalized treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!