Molecular evolution of the Opaque-2 gene in Zea mays L.

J Mol Evol

Laboratoire Génome et Développement des Plantes, UMR 5096-CNRS/IRD/UP, 52 avenue de Villeneuve, 66868 Perpignan, France.

Published: October 2005

The Opaque-2 gene (O2) in maize encodes a transcriptional activator that controls the expression of various genes during kernel development, particularly some of the most abundant endosperm storage protein genes. Compared to its wild relative teosinte, maize has bigger and heavier kernels, with an increased proportion of starch and an altered distribution of the various storage protein categories. The molecular evolution of the O2 gene was investigated in connection with its possible involvement in the domestication process. Most of the coding sequence and parts of introns, 5'UTR, and 3' noncoding regions were sequenced in a set of cultivated and teosinte accessions. One hundred six polymorphic sites (5.4%) and 72 insertions/deletions, located mostly in noncoding regions, were found. Molecular diversity was quite high (pi = 0.0138, theta = 0.0167) compared to that of other transcription factors in maize. The synonymous and nonsynonymous diversity patterns along the coding sequence suggested that different regions are submitted to different functional constraints. Such an evolution would probably be favored by the observed rapid decay of linkage disequilibrium with distance. Cultivated accessions retained about 70% of the diversity observed in teosintes. Purifying selection was detected in both maize and teosintes. No conclusive evidence was obtained for a role of the O2 gene in the domestication process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-005-0003-9DOI Listing

Publication Analysis

Top Keywords

molecular evolution
8
opaque-2 gene
8
storage protein
8
domestication process
8
coding sequence
8
noncoding regions
8
evolution opaque-2
4
gene
4
gene zea
4
zea mays
4

Similar Publications

serovar Gallinarum biovar Gallinarum is a pathogenic bacterium that causes fowl typhoid (FT), affecting chicken flocks worldwide. This study aimed to evaluate the emergence, dissemination and genomic profile of Gallinarum lineages from Brazil. Twelve whole-genomes sequences (WGS) of different .

View Article and Find Full Text PDF

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.

View Article and Find Full Text PDF

The quagga mussel, : a novel model for EcoEvoDevo, environmental research, and the applied sciences.

Front Cell Dev Biol

January 2025

Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Vienna, Austria.

Bivalve mollusks are globally distributed in marine and freshwater habitats. While exhibiting a relatively uniform bodyplan that is characterized by their eponymous bivalved shell that houses the soft-bodied animal, many lineages have acquired unique morphological, physiological, and molecular innovations that account for their high adaptability to the various properties of aquatic environments such as salinity, flow conditions, or substrate composition. This renders them ideal candidates for studies into the evolutionary trajectories that have resulted in their diversity, but also makes them important players for research concerned with climate change-induced warming and acidification of aquatic habitats.

View Article and Find Full Text PDF

The management of complex burn injuries has evolved significantly, with various surgical techniques developed to improve outcomes. This review examines the evolution of these methods, focusing particularly on mesh grafting and the Meek technique. While mesh grafting is effective, it poses challenges such as limited graft coverage and a high demand for autologous skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!