Raman spectra of mammoth ivory specimens have been recorded using near-infrared excitation, and comparisons made with modern Asian and African elephant ivories. Whereas the most ancient mammoth ivory (60-65 ky) showed no evidence for an organic collagen component, more recent samples of mammoth ivory indicated that some preservation had occurred, although with biodeterioration of the protein structure exhibited by the amide I and III bands in the 1200-1700 cm(-1) region of the Raman spectrum. The consequent difficulties encountered when applying chemometrics methods to ancient ivory analysis (which are successful for modern specimens) are noted. In the most ancient mammoth ivory specimens, which are extensively fragmented, evidence of mineralization is seen, with the production of gypsum, calcite and limonite; Raman microscopic analysis of crystalline material inside the fissures of the mammoth ivory shows the presence of gypsum as well as cyanobacterial colonisation. The application of Raman spectroscopy to the nondestructive analysis of archaeological materials in order to gain information of relevance to their preservation or restoration is highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-005-0011-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!