A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Delayed stimulatory effect of low-intensity shockwaves on human periosteal cells. | LitMetric

Delayed stimulatory effect of low-intensity shockwaves on human periosteal cells.

Clin Orthop Relat Res

Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.

Published: September 2005

We investigated the effect of shockwaves on cells explanted from normal human periosteum to study the potential mechanisms of their responses and to determine suitable treatment settings. The cells were subjected to one shockwave treatment with systematic combinations of energy intensities (range, 0.05-0.5 mJ/mm) and number of shocks (range, 500-2000) whereas control cells received no treatment. The immediate effect on cell viability and the long-lasting effect on proliferation, viable cell number at Day 18, and mineralization at Day 35 were assessed. We observed an immediate dose-dependent destructive effect of shockwaves. Energy intensity and number of shocks contributed equally to viability. Total energy dose (intensity x number of shocks) was a better reference for determining the shockwave effect. We also found a long-term stimulatory effect on proliferation, viable cell number, and calcium deposition of human periosteal cells. At the same total energy dose, low-intensity shockwaves with more shocks (0.12 mJ/mm at 1250 shocks) were more favorable for enhancing cellular activities than high-intensity waves with fewer shocks (0.5 mJ/mm at 300 shocks). These findings document some of the biochemical changes of periosteal cells during shockwave treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003086-200509000-00042DOI Listing

Publication Analysis

Top Keywords

periosteal cells
12
number shocks
12
low-intensity shockwaves
8
human periosteal
8
proliferation viable
8
viable cell
8
cell number
8
intensity number
8
total energy
8
energy dose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!