Tourette syndrome (TS) is a childhood neuropsychiatric disorder characterized by motor and vocal tics. Imaging studies found alterations in caudate (Cd) and putamen volumes. To investigate possible alterations in cell populations, postmortem basal ganglia tissue from individuals with TS and normal controls was analyzed by using unbiased stereological techniques. A markedly higher total neuron number was found in the globus pallidus pars interna (GPi) of TS. In contrast, a lower neuron number and density was observed in the globus pallidus pars externa and in the Cd. An increased number and proportion of the GPi neurons were positive for the calcium-binding protein parvalbumin in tissue from TS subjects, whereas lower densities of parvalbumin-positive interneurons were observed in both the Cd and putamen of TS subjects. This change is consistent with a developmental defect in tangential migration of some GABAergic neurons. The imbalance in striatal and GPi inhibitory neuron distribution suggests that the functional dynamics of cortico-striato-thalamic circuitry are fundamentally altered in severe, persistent TS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201574PMC
http://dx.doi.org/10.1073/pnas.0502624102DOI Listing

Publication Analysis

Top Keywords

neuron distribution
8
basal ganglia
8
tourette syndrome
8
neuron number
8
globus pallidus
8
pallidus pars
8
altered parvalbumin-positive
4
neuron
4
parvalbumin-positive neuron
4
distribution basal
4

Similar Publications

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats.

Int J Mol Sci

January 2025

Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.

The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.

View Article and Find Full Text PDF

The mammalian nervous system controls complex functions through highly specialized and interacting structures. Single-cell sequencing can provide information on cell-type-specific chromatin structure and regulatory elements, revealing differences in chromatin organization between different cell types and their potential roles of these differences in brain function. Here, we generated a chromatin accessibility dataset through single-cell ATAC-seq of 174,593 high-quality nuclei from 16 adult rat brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!