It is presently unknown whether any member of the IGFBP (insulin-like growth factor binding protein) family directly participates in the control of cell proliferation. We have previously documented that induction of IGFBP-2 was associated with inhibition of DNA synthesis in lung alveolar epithelial cells. In the present study, we investigated the relationship between IGFBP-2 and the cell cycle inhibitor p21CIP1/WAF1 further. We used serum deprivation to inhibit the proliferation of MLE (mouse lung epithelial)-12 cells, and characterized the spatial localization of IGFBP-2. We found that growth inhibition, which was supported by the strong induction of p21CIP1/WAF1, was correlated with increased secretion of IGFBP-2 and, unexpectedly, with its increased localization in the nucleus and particularly in the cytoplasm. By coimmunoprecipitation, we discovered that IGFBP-2 is capable of binding to p21CIP1/WAF1. Interaction between these two proteins was further supported by colocalization of the proteins within growth-arrested cells, as visualized by confocal microscopy. Furthermore, this interaction increased with the duration of the stress, but was suppressed when proliferation was restimulated by the addition of serum. The recombinant expression of GFP (green fluorescent protein)-tagged IGFBP-2 in transfected MLE-12 cells demonstrated its ability to bind specifically to p21CIP1/WAF1. Taken together, these results provide a link between IGFBP-2 and p21CIP1/WAF1 in the regulation of alveolar lung cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316284 | PMC |
http://dx.doi.org/10.1042/BJ20050517 | DOI Listing |
Mol Med Rep
February 2025
Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK.
Tissue factor (TF) possesses additional physiological functions beyond initiating the coagulation cascade. Cellular signals initiated by cellular TF or on contact with TF‑containing microvesicles, contribute to wound healing through regulating a number of cellular properties and functions. TF regulates the cell cycle checkpoints, however the underlying signalling mechanisms have not been determined.
View Article and Find Full Text PDFDermatol Surg
November 2024
Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, Minnesota.
Background: Cellular senescence, an irreversible cell cycle arrest with secretory phenotype, is a hallmark of skin aging. Regenerative exosome-based approaches, such as topical human platelet extract (HPE), are emerging to target age-related skin dysfunction.
Objective: To evaluate the cellular and molecular effects of topical HPE for skin rejuvenation after 12 weeks of twice daily use.
J Gerontol A Biol Sci Med Sci
January 2024
Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Cellular senescence is a biological aging process that is exacerbated by obesity and leads to inflammation and age- and obesogenic-driven chronic diseases including type 2 diabetes. Caloric restriction (CR) may improve metabolic function in part by reducing cellular senescence and the pro-inflammatory senescence-associated phenotype (SASP). We conducted an ancillary investigation of an 18-week randomized controlled trial (RCT) of CR (n = 31) or Control (n = 27) in 58 middle-aged/older adults (57.
View Article and Find Full Text PDFInt J Oncol
February 2022
Department of Molecular Pathology, Division of Health Sciences, Osaka University, Suita, Osaka 565‑0871, Japan.
miR‑1291 exerts an anti‑tumor effect in a subset of human carcinomas, including pancreatic cancer. However, its role in colorectal cancer (CRC) is largely unknown. In the present study, the expression and effect of miR‑1291 in CRC cells was investigated.
View Article and Find Full Text PDFCancer Med
December 2021
Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan.
Inhibition of CDK4/6 slows the cell cycle and induces senescence in breast cancer cells. However, senescent cancer cells promote invasion and metastasis. Several drugs reportedly target senescent cells, including ABT-263 (navitoclax).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!