Current theoretical and experimental evidence points toward X = N as the identity of the interstitial atom in the [MoFe7S9X] core of the iron-molybdenum cofactor cluster of nitrogenase. This atom functions with mu6 bridging multiplicity to six iron atoms and, if it is nitrogen as nitride, raises a question as to the existence of a family of molecular iron nitrides of higher nuclearity than known dinuclear Fe(III,IV) species with linear [Fe-N-Fe]5+,4+ bridges. This matter has been initially examined by variation of reactant stoichiometry in the self-assembly systems [FeX4]1-/(Me3Sn)3N (X = Cl-, Br-) in acetonitrile. A 2:1 mol ratio affords [Fe4N2Cl10]4- (1), isolated as the Et4N+ salt (72%). This cluster has idealized C2h symmetry with a planar antiferromagnetically coupled [Fe(III)4(mu3-N)2]6+ core containing an Fe2N2 rhombus to which are attached two FeCl3 units. DFT calculations have been performed to determine the dominant magnetic exchange pathway. An 11:8 mol ratio leads to [Fe10N8Cl12]5- (3) as the Et4N+ salt (37%). The cluster possesses idealized D2h symmetry and is built of 15 edge- and vertex-shared rhomboids involving two mu3-N and six mu4-N bridging atoms, and incorporates two of the core units of 1. Four FeN2Cl2 and four FeN3Cl sites are tetrahedral and two FeN5 sites are trigonal pyramidal. The cluster is mixed-valence (9Fe(III) + Fe(IV)); a discrete Fe(IV) site was not detected by crystallography or Mössbauer spectroscopy. The corresponding clusters [Fe4N2Br10]4- and [Fe10N8Br12]5- are isostructural with 1 and 3, respectively. Future research is directed toward defining the scope of the family of molecular iron nitrides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja052150lDOI Listing

Publication Analysis

Top Keywords

family molecular
12
iron nitrides
12
cl- br-
8
molecular iron
8
mol ratio
8
et4n+ salt
8
initial members
4
members family
4
molecular mid-valent
4
mid-valent high-nuclearity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!