AI Article Synopsis

  • This study presents a technique for encouraging targeted nucleation and growth of large, oriented organic semiconductor single crystals using micropatterned self-assembled monolayers (SAMs).
  • The research shows successful growth of these crystals, highlighting their potential applications in organic electronic devices.
  • This method allows for the simultaneous control of multiple growth parameters, representing a significant advancement in the fabrication of organic single-crystal semiconductor devices.

Article Abstract

This work demonstrates a method for inducing site-specific nucleation and subsequent growth of large oriented organic semiconductor single crystals using micropatterned self-assembled monolayers (SAMs). We demonstrate growth of oriented, patterned, and large organic semiconductor single crystals for potential use in organic electronic devices. The control over multiple parameters in a single system has not yet been reported. The ability to control various aspects of crystal growth in one system provides a powerful technique for the bottom-up fabrication of organic single-crystal semiconductor devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja052919uDOI Listing

Publication Analysis

Top Keywords

organic semiconductor
12
semiconductor single
12
single crystals
12
growth large
8
large oriented
8
oriented organic
8
organic
5
patterned growth
4
semiconductor
4
single
4

Similar Publications

Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

A Three-Dimensional, Flexible Conductive Network Based on an MXene/Rubber Composite for Lithium Metal Anodes.

ACS Appl Mater Interfaces

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China.

Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site.

View Article and Find Full Text PDF

Electronics based on natural or degradable materials are a key requirement for next-generation devices, where sustainability, biodegradability, and resource efficiency are essential. In this context, optimizing the molecular chemical structure of organic semiconductor compounds (OSCs) used as active layers is crucial for enhancing the efficiency of these devices, making them competitive with conventional electronics. In this work, honey-gated organic field-effect transistors (HGOFETs) were fabricated using four different perylene derivative films as OSCs, and the impact of the chemical structure of these perylene derivatives on the performance of HGOFETs was investigated.

View Article and Find Full Text PDF

Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.

ACS Cent Sci

December 2024

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!