Odorants and pheromones as well as sweet- and bitter-tasting small molecules are perceived through activation of G protein-coupled chemosensory receptors. In contrast, gustatory detection of salty and sour tastes may involve direct gating of sodium channels of the DEG/ENaC family by sodium and hydrogen ions, respectively. We have found that ppk25, a Drosophila melanogaster gene encoding a DEG/ENaC channel subunit, is expressed at highest levels in the male appendages responsible for gustatory and olfactory detection of female pheromones: the legs, wings, and antennae. Mutations in the ppk25 gene reduce or even abolish male courtship response to females in the dark, conditions under which detection of female pheromones is an essential courtship-activating sensory input. In contrast, the same mutations have no effect on other behaviors tested. Importantly, ppk25 mutant males that show no response to females in the dark execute all of the normal steps of courtship behavior in the presence of visible light, suggesting that ppk25 is required for activation of courtship behavior by chemosensory perception of female pheromones. Finally, a ppk25 mutant allele predicted to encode a truncated protein has dominant-negative properties, suggesting that the normal Ppk25 protein acts as part of a multiprotein complex. Together, these results indicate that ppk25 is necessary for response to female pheromones by D. melanogaster males, and suggest that members of the DEG/ENaC family of genes play a wider role in chemical senses than previously suspected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200314 | PMC |
http://dx.doi.org/10.1073/pnas.0506420102 | DOI Listing |
Insects
November 2024
Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 West Truck Road, Buzzards Bay, MA 02542, USA.
The Asian longhorned beetle, (Coleoptera: Cerambycidae: Lamiinae), is a serious pest of over 43 species of hardwood trees in North America, China and Europe. The development of an effective lure and trap for monitoring has been hindered by the fact that mate finding involves a rather complex series of behaviors and responses to several chemical (and visual), cues. Adults (female-biased) locate a tree via host kairomones.
View Article and Find Full Text PDFInsects
November 2024
Commodity Protection and Quality Unit, San Joaquin Valley Agricultural Sciences Center, United States Department of Agriculture, Agriculture Research Service, Parlier, CA 93648, USA.
The navel orangeworm, , is the principal pest of pistachio and almond in California. The timing of the insecticide application is challenging because there is no model that predicts when pistachio is vulnerable to infestation. Sixteen years of pistachio flight data from Madera and Fresno counties (541,892 adults) were analyzed to determine if there was a consistent starting point each year for flights that overlap pistachio vulnerability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany.
The sense of smell is a central sensory modality of most terrestrial species. However, our knowledge of olfaction is based on vertebrates and insects. In contrast, little is known about the chemosensory world of spiders and nothing about how they perform olfaction despite their important ecological role.
View Article and Find Full Text PDFSci Rep
January 2025
Applied BioSciences, Macquarie University, NSW, 2109, Sydney, Australia.
Male tephritid fruit flies typically emit pheromones from rectal glands to attract mates. Consistent with this, virgin females of the cucumber fruit fly, Zeugodacus cucumis (French), were found to be attracted to volatiles emitted by crushed male rectal glands in Y-tube olfactometer bioassays. Electrophysiological studies identified several male rectal gland compounds that triggered responses in female antennae.
View Article and Find Full Text PDFPLoS One
December 2024
Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America.
The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!