Robo3 isoforms have distinct roles during zebrafish development.

Mech Dev

Center for Molecular Neurobiology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.

Published: October 2005

Roundabout (Robo) receptors and their secreted ligand Slits have been shown to function in a number of developmental events both inside and outside of the nervous system. We previously cloned zebrafish robo orthologs to gain a better understanding of Robo function in vertebrates. Further characterization of one of these orthologs, robo3, has unveiled the presence of two distinct isoforms, robo3 variant 1 (robo3var1) and robo3 variant 2 (robo3var2). These two isoforms differ only in their 5'-ends with robo3var1, but not robo3var2, containing a canonical signal sequence. Despite this difference, both forms accumulate on the cell surface. Both isoforms are contributed maternally and exhibit unique and dynamic gene expression patterns during development. Functional analysis of robo3 isoforms using an antisense gene knockdown strategy suggests that Robo3var1 functions in motor axon pathfinding, whereas Robo3var2 appears to function in dorsoventral cell fate specification. This study reveals a novel function for Robo receptors in specifying ventral cell fates during vertebrate development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2005.06.006DOI Listing

Publication Analysis

Top Keywords

robo3 isoforms
8
robo receptors
8
robo3 variant
8
robo3
5
isoforms distinct
4
distinct roles
4
roles zebrafish
4
zebrafish development
4
development roundabout
4
robo
4

Similar Publications

Dynamic and coordinated axonal responses to changing environments are critical for establishing neural connections. As commissural axons migrate across the CNS midline, they are suggested to switch from being attracted to being repelled in order to approach and to subsequently leave the midline. A molecular mechanism that is hypothesized to underlie this switch in axonal responses is the silencing of Netrin1/Deleted in Colorectal Carcinoma (DCC)-mediated attraction by the repulsive SLIT/ROBO1 signaling.

View Article and Find Full Text PDF

Basal-like breast cancer (BLBC) is a highly aggressive breast cancer subtype frequently associated with poor prognosis. Due to the scarcity of targeted treatment options, conventional cytotoxic chemotherapies frequently remain the standard of care. Unfortunately, their efficacy is limited as BLBC malignancies rapidly develop resistant phenotypes.

View Article and Find Full Text PDF

Background: The transmembrane receptor family Roundabout (Robo) was described to have an essential role in the developing nervous system. Recent studies demonstrated that Robo3 shows an altered expression in rheumatoid arthritis as well as in melanoma.

Context And Purpose Of The Study: Until today no detailed studies of the two Robo3 isoforms (Robo3A and Robo3B) and their roles in rheumatoid arthritis synovial fibroblasts, respectively malignant melanoma are available.

View Article and Find Full Text PDF

Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3.

View Article and Find Full Text PDF

Slits and Robos control the midline crossing of commissural axons, which are not sensitive to the midline repellent Slit before crossing but gain Slit responsiveness to exit the midline and avoid recrossing. Robo3.1A promotes midline crossing of commissural axons by suppressing the axonal responsiveness to the midline repellent Slit, but the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!