Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease.

Exp Neurol

Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, British Columbia Research Institute for Children's and Women's Health, University of British Columbia, 980 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4.

Published: December 2005

Huntington disease (HD) is an adult-onset neurodegenerative disorder that is characterized by selective degeneration in the striatum. There are currently no treatments that can prevent the progressive decline of motor and cognitive function in HD. In parallel with a human clinical trial, we examined the efficacy of ethyl-EPA treatment in the YAC128 mouse model of HD. Oral delivery of ethyl-EPA to symptomatic YAC128 mice beginning at 7 months of age increased membrane EPA levels 3-fold (P < 0.001) and resulted in a modest but significant improvement in motor dysfunction by 12 months of age as measured by open-field activity (P = 0.01) and performance on the rotarod (P = 0.05). At this age, ethyl-EPA-treated YAC128 mice showed no improvement in striatal volume, striatal neuron counts, striatal neuronal cross-sectional area, or striatal DARPP-32 expression compared to untreated YAC128 mice, thereby indicating no reduction of striatal neuropathology. This result is congruent with modest motor benefits observed in HD patients treated with ethyl-EPA. Overall, this work demonstrates the feasibility of experimental therapeutics in the YAC128 mouse model and suggests that experiments in these mice may be predictive for future human clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2005.07.021DOI Listing

Publication Analysis

Top Keywords

yac128 mouse
12
mouse model
12
yac128 mice
12
ethyl-epa treatment
8
motor dysfunction
8
huntington disease
8
human clinical
8
months age
8
yac128
6
striatal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!