Cytokinins are important purine derivatives that act as redifferentiation-inducing hormones to control many processes in plants. Cytokinins such as isopentenyladenine (IPA) and kinetin are very effective at inducing the granulocytic differentiation of human myeloid leukemia HL-60 cells. We examined the gene expression profiles associated with exposure to IPA using cDNA microarrays and compared the results with those obtained with other inducers of differentiation, such as all-trans retinoic acid (ATRA), 1 alpha,25-dihydroxyvitamin D3 (VD3) and cotylenin A (CN-A). Many genes were up-regulated, and only a small fraction were down-regulated, upon exposure to the inducers. IPA and CN-A, but not ATRA or VD3, immediately induced the expression of mRNA for the calcium-binding protein S100P. The up-regulation of S100P was confirmed at the protein expression level. We also examined the expression of other S100 proteins, including S100A8, S100A9 and S100A12, and found that IPA preferentially up-regulated S100P at the early stages of differentiation. IPA-induced differentiation of HL-60 cells was suppressed by treatment with antisense oligonucleotides against S100P, suggesting that S100P plays an important role in cell differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2005.01.005DOI Listing

Publication Analysis

Top Keywords

calcium-binding protein
8
protein s100p
8
differentiation human
8
human myeloid
8
myeloid leukemia
8
hl-60 cells
8
s100p
6
differentiation
6
up-regulation calcium-binding
4
s100p involvement
4

Similar Publications

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction.

J Neurochem

January 2025

Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK.

Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade.

View Article and Find Full Text PDF

Memory is a dynamic process of encoding, storing, and retrieving information. It includes sensory, short-term, and long-term memory, each with unique characteristics. Nitric oxide (NO) is a biological messenger synthesized on demand by neuronal nitric oxide synthase (nNOS) through a biochemical process initiated by glutamate binding to NMDA receptors, causing membrane depolarization and calcium influx.

View Article and Find Full Text PDF

An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!