This study investigated whether a correlation between leukocyte-derived elastolytic activity, alveolar epithelial type-1 cell damage, and leukocyte infiltration of the airways existed in guinea-pigs chronically exposed to inhaled lipopolysaccharide (LPS). The airway pathology of this model, notably the neutrophilia, resembles chronic obstructive pulmonary disease (COPD). The effect of the corticosteroid, dexamethasone, or the phosphodiesterase-4 (PDE4)-inhibitor, rolipram, on these features was studied. Conscious guinea-pigs were exposed for 1 h to single or repeated (nine) doses of LPS (30 microg ml(-1)). Dexamethasone (20 mg kg(-1), ip) or rolipram (1 mg kg(-1), ip) was administered 24 and 0.5 h before the first exposure and daily thereafter. Bronchoalveolar lavage fluid (BALF) was removed and elastolytic activity determined as the elastase-like release of Congo Red from impregnated elastin. The presence of the specific epithelial cell type-1 protein (40-42 kDa) RT1(40) in BALF was identified by Western blotting using a rat monoclonal antibody and semi-quantified by dot-blot analysis. The antibody was found to identify guinea-pig RT1(40). BALF inflammatory cells, particularly neutrophils and macrophages, and elastolytic activity were increased in chronic LPS-exposed guinea-pigs, the latter by 90%. Chronic LPS exposure also increased (10.5-fold) RT1(40) levels, indicating significant alveolar epithelial type-1 cell damage. Dexamethasone or rolipram treatment reduced the influx of inflammatory cells, the elastolytic activity (by 40% and 38%, respectively), and RT1(40) levels (by 50% and 57%, respectively). In conclusion, chronic LPS-exposed guinea-pigs, like COPD, exhibit elastolytic lung damage. This was prevented by a PDE4 inhibitor and supports their development for suppressing this leukocyte-mediated pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2005.01.006 | DOI Listing |
Microbiol Spectr
October 2024
Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
Am J Physiol Lung Cell Mol Physiol
November 2024
Center for Lung Biology, University of Washington, Seattle, Washington, United States.
Chronic obstructive pulmonary disease (COPD), comprised of chronic bronchitis and emphysema, is a leading cause of morbidity and mortality worldwide. Mitogen-activated protein 2 kinase (MAP2K) pathway activation is present in COPD lung tissue and a genetic polymorphism in associates with FEV1 decline in COPD, suggesting it may contribute to disease pathogenesis. To test the functional contribution of in cigarette smoke (CS)-induced lung inflammation, we used a short-term CS exposure model in mice deficient in myeloid () and wild-type mice ().
View Article and Find Full Text PDFJ Biomed Mater Res A
April 2024
Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.
The over-expression of c-Jun N-terminal kinase (JNK2), a stress activated mitogen kinase, in the aortic wall plays a critical role in the formation and progression of abdominal aortic aneurysm (AAA). This triggers chronic downstream upregulation of elastolytic matrix metalloproteinases (MMPs), MMPs2 and 9 to cause progressive proteolytic breakdown of the wall elastic matrix. We have previously shown that siNRA knockdown of JNK2 gene expression in an AAA culture model stimulates downstream elastin gene expression, elastic fiber formation, crosslinking and reduces elastolytic MMPs2 and 9.
View Article and Find Full Text PDFTissue Eng Part A
January 2024
Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.
Abdominal aortic aneurysm (AAA) is a critical, multifactorial cardiovascular disorder marked by localized dilatation of the abdominal aorta. A major challenge to countering the pathophysiology of AAAs lies in the naturally irreversible breakdown of elastic fibers in the aorta wall, which is linked to the poor elastogenicity of adult and diseased vascular smooth muscle cells (SMCs) and their impaired ability to assemble mature elastic fibers in a chronic proteolytic tissue milieu. We have previously shown that these are downstream effects of neutrophil elastase-induced activation of the epidermal growth factor receptor (EGFR) activity in aneurysmal SMCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!