The Gbeta and Ggamma subunit of the heterotrimeric G proteins form a functional dimer that is stable once assembled in vivo or in vitro. The requirements, mechanism, and specificity of dimer formation are still incompletely understood, but represent important biochemical processes involved in the specificity of cellular signaling through G proteins. Here, seven Gbeta and 12 FLAG-epitope-tagged Ggamma subunits were separately synthesized in vitro using a rabbit reticulocyte lysate expression system. The translation products were combined and dimers isolated by immunoprecipitation. Gbeta1 and Gbeta4 formed dimers with all Ggamma subunit isoforms, generally with Gbeta/Ggamma stoichiometries between 0.2:1 and 0.5:1. Gbeta5, Gbeta5L, and Gbeta3s did not form significant amounts of dimer with any of the gamma subunit isoforms. Gbeta2 and Gbeta3 formed dimers with selected Ggamma isoforms to levels intermediate between that of Gbeta1/Gbeta4 and Gbeta3s/Gbeta5/Gbeta5L. We also expressed selected Gbetagamma in HEK293 cells and measured PLCbeta2 activity. Gbetagamma dimer-dependent increases in IP3 production were seen with most Gbeta1, Gbeta2, and Gbeta5 combinations, indicating functional dimer expression in intact cells. These results define the complete set of G protein betagamma dimers that are formed using a single biochemical assay method and suggest that there are Gbeta isoform-specific factors in rabbit reticulocyte lysates that determine the efficacy of Gbetagamma dimer formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0504254DOI Listing

Publication Analysis

Top Keywords

dimer formation
16
protein betagamma
8
formation gbeta
8
gbeta ggamma
8
ggamma subunit
8
functional dimer
8
rabbit reticulocyte
8
formed dimers
8
subunit isoforms
8
dimer
7

Similar Publications

The glycoprotein hormones of humans, produced in the pituitary and acting through receptors in the gonads to support reproduction and in the thyroid gland for metabolism, have co-evolved from invertebrate counterparts . These hormones are heterodimeric cystine-knot proteins; and their receptors bind the cognate hormone at an extracellular domain and transmit the signal of this binding through a transmembrane domain that interacts with a heterotrimeric G protein. Structures determined for the human receptors as isolated for cryogenic electron microscopy (cryo-EM) are all monomeric despite compelling evidence for their functioning as dimers .

View Article and Find Full Text PDF

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

Single-electron transfer, low alkali metal contents, and large-molecular masses limit the capacity of cathodes. This study uses a cost-effective and light-molecular-mass orthosilicate material, KFeSiO, with a high initial potassium content, as a cathode for potassium-ion batteries to enable the transfer of more than one electron. Despite the limited valence change of Fe ions during cycling, KFeSiO can undergo multiple electron transfers via successive oxygen anionic redox reactions to generate a high reversible capacity.

View Article and Find Full Text PDF

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!