A DNA system consisting of pyrene-modified oligonucleotides and nitrobenzoate (Nb)-modified DNA-binding tripeptides has been applied to study electron-transfer processes through the DNA-peptide interface. 5-(Pyren-1-yl)-2'-deoxyuridine (Py-dU) has been used as the photoinducible charge generator. Upon excitation at 350 nm, a pyrene-like excited state (Py-dU) is formed which undergoes an electron transfer yielding the charge-separated state which is the contact ion pair Py(*)(+)-dU(*)(-). The subsequent electron shift from dU(*)(-) into the base stack competes with charge recombination and can be probed chemically by trapping the electron at the 5-bromo-2'-deoxyuridine (Br-dU) group leading to strand cleavage which can be quantified by HPLC analysis. Several Nb-modified DNA-binding tripeptides influence these DNA-mediated electron-transfer processes as shown by fluorescence spectroscopy experiments. Fluorescence quenching can occur primarily through a reductive electron-transfer process in which the Nb group traps the electron thermodynamically from the contact ion pair Py(*)(+)-dU(*)(-). Moreover, our results indicate that, once the negative charge has been trapped on the peptide, oxidative processes from Py(*)(+) take place resulting in an enhanced and nonspecific strand degradation of the Py-dU-modified duplexes. The latter type of strand cleavage can be inhibited by the presence of tryptophane or tyrosine as part of the peptides. Most remarkably, DNA-binding tripeptides, which bear both the Nb and the tryptophan/tyrosine moiety, are able to trap both the negative and the positive charge from the contact ion pair Py(*)(+)-dU(*)(-).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0504557 | DOI Listing |
J Inorg Biochem
August 2022
Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Department of Fruit sciences, Viticulture and Enology, Trieda Andreja Hlinku 2, 949 76 Nitra-Chrenová, Slovakia.
Newly palladium(II) complexes (C1, C2) with derivatives of 2-aminothiazoles (L1 = 2-amino-6-methylbenzothiazole, L2 = 2-amino-6-chlorobenzothiazole), general formula [PdLCl] were synthesized and characterized by elemental microanalyses, IR, NMR spectroscopy and X-ray spectroscopy in case of [Pd(L2)Cl]. The kinetic of the substitution reactions of complexes and the nucleophiles, such as guanosine-5'-monophosphate (5'-GMP), tripeptide glutathione (GSH) and amino acid L-methionine (L-Met), were studied by stopped-flow technique. The complex C2 was always more reactive, while the order of the reactivity of the nucleophiles, due to the associative mode of the reaction, was L-Met > GSH > 5'-GMP.
View Article and Find Full Text PDFComput Biol Med
June 2022
Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. Electronic address:
Accurate identification of DNA-binding proteins (DBPs) is critical for both understanding protein function and drug design. DBPs also play essential roles in different kinds of biological activities such as DNA replication, repair, transcription, and splicing. As experimental identification of DBPs is time-consuming and sometimes biased toward prediction, constructing an effective DBP model represents an urgent need, and computational methods that can accurately predict potential DBPs based on sequence information are highly desirable.
View Article and Find Full Text PDFTranscription factors (TFs) are proteins specifically involved in gene expression regulation. It is generally accepted in epigenetics that methylated nucleotides could prevent the TFs from binding to DNA fragments. However, recent studies have confirmed that some TFs have capability to interact with methylated DNA fragments to further regulate gene expression.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2022
Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey.
The main objective of the present study is to investigate the molecular structure and DNA binding interaction of the tripeptide, which has anticancer, antioxidant and analgesic properties, using various (MD, QM, molecular docking), (UV, FT-IR, FTIR-ATR, Raman, gel electrophoresis) and (MCF-7 and HeLa cancer cell lines and BEAS-2B cell line) methods. The optimized geometry, vibrational wavenumbers, molecular electrostatic potential (MEP), natural bond orbital (NBO) and HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital) calculations were carried out with Density Functional Theory (DFT) using B3LYP/6-311++G(d,p) basis set to indicate conformational, vibrational and intramolecular charge transfer characteristics. The assignment of all fundamental theoretical vibration wavenumbers was performed using potential energy distribution analysis (PED).
View Article and Find Full Text PDFJ Invest Dermatol
October 2021
Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea. Electronic address:
The keratinocytes in UV-irradiated skin produce and secrete α-melanocyte-stimulating hormone. α-Melanocyte-stimulating hormone upregulates the expression of MITF in melanocytes through the cAMP‒protein kinase A‒CREB signaling pathway. Thereafter, MITF induces the expression of melanogenic genes, including the tyrosinase gene TYR and TYRP-1 and TYRP-2 genes, which leads to the synthesis and accumulation of melanin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!