[Study of water-sol core-shell CdSe/CdS quantum dots].

Guang Pu Xue Yu Guang Pu Fen Xi

Institute of Optoelectronic Technology and Laboratory of Information Storage, Display and Materials, Beijing Jiaotong University, Beijing 100044, China.

Published: May 2005

Water-sol core/shell CdSe/CdS quantum dots (QDs) were synthesized in aqueous solution by using mercapto-acetate acid as stabilizer. The UV-Vis absorption and emission spectra were studied. The size of the SdSe-core was about 2 nm estimated by absorption edge and X-ray powder diffraction(XRD). The structure was also characterized by X-ray photoelectron spectroscopy(XPS). The intensity of luminescence of the quantum dots was greatly enhanced after the surface was modified with CdS shell. Red shift of the peak was shown in both the emission and absorption spectra.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cdse/cds quantum
8
quantum dots
8
[study water-sol
4
water-sol core-shell
4
core-shell cdse/cds
4
quantum dots]
4
dots] water-sol
4
water-sol core/shell
4
core/shell cdse/cds
4
dots qds
4

Similar Publications

Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

Direct manipulation of light spin-angular momentum is desired in optoelectronic applications such as, displays, telecommunications, or imaging. Generating polarized light from luminophores avoids using optical components that cause brightness losses and hamper on-chip integration of light sources. Endowing chirality to achiral emitters for direct generation of polarized light benefits from existing materials and can be achieved by chiral nanophotonics.

View Article and Find Full Text PDF

Obtaining efficient blue emission from CdSe nanoplatelets (NPLs) remains challenging due to charge trapping and sub-bandgap emission. Thanks to a design-of-experiments (DoE) approach, we significantly improved the NPL synthesis, obtaining precise control over the lateral aspect ratio (length/width). We raised the photoluminescence quantum efficiency up to 66% after growth of a CdS crown, with complete elimination of trap-state emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!