The application of two-dimensional electrophoresis for the identification of hydrophobic membrane proteins is principally hampered by precipitation of many of these proteins during first-dimension, isoelectric focusing. Therefore new strategies towards the identification and characterization of membrane proteins are being developed. In this work we present a direct and rapid approach from blue-native gels to mass spectrometry, which allows the analyses of complete complexes and prevents protein aggregation of hydrophobic regions during electrophoresis. We combine blue-native gel electrophoresis and liquid chromatography--nanospray-iontrap tandem mass spectrometry to analyze the composition of oxidative phosphorylation complexes I, III, IV and V from bovine-heart mitochondria as a model system containing a number of highly hydrophobic proteins. Bands from blue-native gels were subjected either to in-gel or to in-solution tryptic digestion. The obtained peptide mixtures were further analyzed by liquid chromatography--tandem mass spectrometry and the corresponding proteins were identified by database search. From a total of 86 proteins, 67 protein subunits could be identified including all highly hydrophobic components, except the ND4L and ND6 subunits of complex I. We demonstrate that liquid chromatography--tandem mass spectrometry combined to blue-native electrophoresis is a straightforward tool for proteomic analysis of multiprotein complexes, and especially for the identification of very hydrophobic membrane protein constituents that are not accessible by common isoelectric focusing/sodium dodecyl sulphate gel electrophoresis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.903DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
hydrophobic proteins
8
membrane protein
8
blue-native electrophoresis
8
identification hydrophobic
8
hydrophobic membrane
8
membrane proteins
8
blue-native gels
8
gel electrophoresis
8
highly hydrophobic
8

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

New Numerical Inversion Method to Improve the Spatial Accuracy of Elemental Imaging for LA-ICP-MS.

Anal Chem

January 2025

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.

The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!