Nitric oxide mediates increased susceptibility to dopaminergic damage in Nurr1 heterozygous mice.

FASEB J

South Texas Veteran Health Care System and Department of Medicine of UT Health Science, San Antonio, Texas, USA.

Published: September 2005

AI Article Synopsis

  • Knocking out the Nurr1 gene leads to a loss of dopaminergic neurons in the midbrain and makes these neurons more vulnerable to toxins.
  • Increased levels of neuronal nitric oxide synthase and 3-nitrotyrosine were found in mice with reduced Nurr1 expression, indicating a potential role of nitric oxide in this increased vulnerability.
  • The study also showed that this vulnerability triggers an apoptotic cascade through changes in transcription factor activity, further contributing to the damage in Nurr1 heterozygous mice.

Article Abstract

Knocking out of Nurr1 gene, a member of nuclear receptor superfamily, causes selective agenesis of dopaminergic neurons in midbrain. Reduced expression of Nurr1 increases the vulnerability of mesencephalic dopamine neurons to dopaminergic toxins. We evaluated the role of nitric oxide as a possible mechanism for this increased susceptibility. Increased expression of neuronal nitric oxide synthase and increased 3-nitrotyrosine were observed in striatum of Nurr1 heterozygous (Nurr1 +/-) mice as compared with wild-type. Increased cytochrome C activation and consecutive release of Smac/DIABLO were also observed in Nurr1 +/- mice. An induction of active Caspase-3 and p53, cleavage of poly-ADP (RNase) polymerase and reduced expression of bcl-2 were observed in Nurr1 +/- mice. Methamphetamine significantly increased these markers in Nurr1 +/- mice as compared with wild-type. The present data therefore suggest that nitric oxide plays a role as a modulating factor for the increased susceptibility, but not the potentiation, of the dopaminergic terminals in Nurr1 +/- mice. We also report that this increased neuronal nitric oxide synthase expression and increased nitration in Nurr1 +/- mice led to the activation of apoptotic cascade via the differential alterations in the DNA binding activity of transcription factors responsible for the propagation of growth arrest as well as apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-3362comDOI Listing

Publication Analysis

Top Keywords

nurr1 +/-
24
+/- mice
24
nitric oxide
20
increased susceptibility
12
nurr1
10
increased
9
nurr1 heterozygous
8
reduced expression
8
neuronal nitric
8
oxide synthase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!