A cranial neural tube defect in Crooked tail (Cd) mice is prevented with prenatal dietary folic acid Cd positional cloning reveals a missense mutation of a highly conserved amino acid in the low density lipoprotein receptor-related protein 6 (Lrp6), a coreceptor required for Wnt canonical signaling. Molecular modeling predicts that Lrp6(Cd) alters a hinge region of the second YWTD beta-propeller domain. Mutant LRP6 binds to Wnt and Dickkopf1 (Dkk1) but not Mesd1, and Dkk1 cannot antagonize Wnt in Cd/Cd cells, resulting in hyperactivity. NIH 3T3 cells transfected with a mutant Lrp6 plasmid resist Dkk1 antagonism much like Cd/+ cells, confirming the significance of the mutation. The Lrp6 mutation in Cd mice provides evidence for a functional connection between Wnt signaling and folate rescue of neural tube defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200260PMC
http://dx.doi.org/10.1073/pnas.0501963102DOI Listing

Publication Analysis

Top Keywords

neural tube
12
crooked tail
8
tube defects
8
lipoprotein receptor-related
8
receptor-related protein
8
mutant lrp6
8
wnt
5
tail model
4
model human
4
human folate-responsive
4

Similar Publications

Background: DNA hypomethylation and uracil misincorporation into DNA, both of which have a very important correlation with colorectal carcinogenesis. Folate plays a crucial role in DNA synthesis, acting as a coenzyme in one-carbon metabolism, which involves the synthesis of purines, pyrimidines, and methyl groups. MTHFR, a key enzyme in folate metabolism, has been widely studied in relation to neural tube defects and hypertension, but its role in colorectal cancer remains underexplored.

View Article and Find Full Text PDF

Introduction Congenital malformations are a major cause of perinatal morbidity and mortality in developing countries and are assuming greater importance than ever before. They affect a variety of organ systems and various etiologies have been identified in literature including Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus, Herpes Simplex (TORCH) infections, exposure to pollutants, consumption of tobacco and alcohol, and advanced maternal age. In developing countries, diagnosis is frequently delayed which leads to poorer outcomes.

View Article and Find Full Text PDF

Spinal dysraphism is the incomplete fusion of the neural arch, which can be seen as an occult or open neural tube defect. Meningoceles are a form of open neural tube defect characterized by cystic dilatation of the meninges containing cerebrospinal fluid without the involvement of neural tissue. Neurosurgical intervention is necessary in the newborn period since survival in advancing ages is often impossible.

View Article and Find Full Text PDF

Peptide ion mobility adds an extra dimension of separation to mass spectrometry-based proteomics. The ability to accurately predict peptide ion mobility would be useful to expedite assay development and to discriminate true answers in a database search. There are methods to accurately predict peptide ion mobility through drift tube devices, but methods to predict mobility through high-field asymmetric waveform ion mobility (FAIMS) are underexplored.

View Article and Find Full Text PDF

Sonic Hedgehog Determines Early Retinal Development and Adjusts Eyeball Architecture.

Int J Mol Sci

January 2025

Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan.

The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to () mutations that disturb the development of the ventral midline of the neural tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!