Overexpression of cardiac connexin45 increases susceptibility to ventricular tachyarrhythmias in vivo.

Am J Physiol Heart Circ Physiol

Cardiovascular Division, Department of Medicine, Washington Univ. School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA.

Published: January 2006

Electrophysiological remodeling involving gap junctions has been demonstrated in failing hearts and may contribute to intercellular uncoupling, delayed conduction, enhanced arrhythmias, and vulnerability to sudden death in patients with heart failure. Recently, we showed that failing human hearts exhibit marked increases in connexin45 (Cx45) expression in addition to previously documented decreases in connexin43 (Cx43) expression. Each of these changes results in reduced gap junction coupling. The objective of the present study was to examine functional consequences of increased Cx45 in cardiac gap junctions. Transgenic mice with cardiac-selective overexpression of the developmentally downregulated cardiac connexin, connexin45 (Cx45OE mice) were subjected to in vivo electrophysiology studies in which an intracardiac catheter was used to induce ventricular arrhythmias in anesthetized mice, and in which ambulatory ECG monitoring was used to detect spontaneous arrhythmias in unanesthetized mice. Hearts were analyzed by TaqMan RT-PCR, immunostaining, immunoblotting, and echocardiography. Lucifer yellow and neurobiotin dye transfer was used to assess coupling in transgenic and control myocyte cultures. Cx45 mRNA was two orders of magnitude greater in Cx45OE mice. Cx45-immunoreactive signal at gap junctions increased twofold and total Cx45 protein by immunoblotting increased 25% in Cx45OE mice compared with nontransgenic littermate controls. Functionally, Cx45OE mice exhibited more inducible ventricular tachycardia than controls but did not exhibit any other functional or structural derangements as assessed by echocardiography. Ventricular myocytes isolated from Cx45OE mice exhibited diminished intercellular transfer of Lucifer yellow dye and increased transfer of neurobiotin, consistent with altered cell-to-cell communication. Thus increased myocardial expression of Cx45 results in remodeling of intercellular coupling and greater susceptibility to ventricular arrhythmias in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01308.2004DOI Listing

Publication Analysis

Top Keywords

cx45oe mice
20
gap junctions
12
susceptibility ventricular
8
mice
8
ventricular arrhythmias
8
lucifer yellow
8
mice exhibited
8
ventricular
5
cx45
5
increased
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!