Background: Chlamydia trachomatis is responsible for a widespread sexually transmitted infection. In men, it is associated with a wide clinical spectrum causing infertility. Furthermore, C. trachomatis serovar E infection decreases motility and increases the number of non-viable sperm. No other effects of C. trachomatis have been reported on sperm despite the crucial role of DNA integrity for sperm function. The aim of this study was to investigate the effects of C. trachomatis on sperm apoptosis.
Methods: Sperm from eight normozoospermic men were incubated with increasing concentrations of C. trachomatis serovar E elementary bodies (EB) for 6 and 24 h. Sperm were then collected to evaluate phosphatidylserine (PS) membrane translocation and DNA fragmentation by Annexin V-propidium iodide staining, TUNEL assay and flow cytometry.
Results: After 6 h of incubation, C. trachomatis had no effect on the percentage of sperm showing PS externalization. However, a significant effect on this parameter was observed after 24 h. C. trachomatis also significantly increased the number of sperm with DNA fragmentation both after 6 and 24 h of incubation.
Conclusions: C. trachomatis causes sperm PS externalization and DNA fragmentation. These effects may explain the negative direct impact of C. trachomatis infection on sperm fertilizing ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/dei269 | DOI Listing |
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.
View Article and Find Full Text PDFConnections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence.
View Article and Find Full Text PDFToxicol Rep
June 2025
Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt.
Cadmium (Cd) is among the most ecologically harmful heavy metals. The purpose of this work was to identify the biologically active components in dried oleo-resin-gum of extract (FAE) and assess their preventive efficacy against oxidative damage caused by Cd in rats. The biologically active components were identified using HPLC and GC-MS.
View Article and Find Full Text PDFZygote
January 2025
Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
Recently, the World Health Organization recommendation for abstinence time for semen analysis has been challenged in some studies and many of them have supported the advantages of a second short abstinence ejaculation. More evidence is needed to approve this for clinical use. This study aimed to compare the average routine abstinence time (2-7 days) with the short time (1-2 h) on sperm quality based on functional parameters in a population of oligo-astheno-teratozoospermia (OAT) men.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.
Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!