Promethazine (PMZ) is an FDA-approved antihistaminergic drug that was identified as a potentially neuroprotective compound in the NINDS screening program. PMZ accumulates in brain mitochondria in vivo and inhibits Ca2+-induced mitochondrial permeability transition pore (PTP) in rat liver mitochondria in vitro. We hypothesized that PMZ may have a protective effect in a mitochondrial toxin model of Parkinson's disease (PD). Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) sustained a significant loss of dopaminergic neurons within the SNpc that was strongly attenuated by PMZ treatment. However, neither striatal MPP+ concentrations nor MPTP-induced inhibition of mitochondrial complex I were affected by PMZ treatment. In isolated mouse brain mitochondria, PMZ partially prevented and reversed MPP+-induced depolarization of membrane potential and inhibited the Ca2+-induced PTP in brain mitochondria. The sum of data indicates that PMZ is a strong neuroprotective agent capable of protecting dopaminergic neurons against MPTP toxicity in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2005.05.022 | DOI Listing |
J Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy.
Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration.
View Article and Find Full Text PDFBiomolecules
December 2024
Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Vascular dementia (VaD) is a progressive neurodegenerative condition prevalent among elderly adults marked by cognitive decline resulting from injured and/or improperly functioning cerebrovasculature with resultant disruptions in cerebral blood flow. Currently, VaD has no specific therapeutics and the exact pathobiology is still being investigated. VaD has been shown to develop when reactive oxygen species (ROS) form from damaged targets at different levels of organization-mitochondria, endothelial cells, or cerebrovasculature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!