In the present work, we study the structure and the orientation of the 23 N-terminal peptide of the HIV-1 gp 41 protein (AVGIGALFLGFLGAAGSTMGARS) called FP23. The behaviour of FP23 was investigated alone at the air/water interface and inserted into various lipid model systems: in monolayer or multibilayers of a DOPC/cholesterol/DOPE/DOPG (6/5/3/2) and in a DMPC bilayer. PMIRRAS and polarized ATR spectroscopy coupled with Brewster angle microscopy and spectral simulations were used to precisely determine the structure and the orientation of the peptide in its environment as well as the lipid perturbations induced by the FP23 insertion. The infra-red results show the structural polymorphism of the FP23 and its ability to transit quasi irreversibly from an alpha-helix to antiparallel beta-sheets. At the air/water interface, the transition is induced by compression of the peptide alone and is modulated by compression and lipid to peptide ratio (Ri) when FP23 is inserted into a lipid monolayer. In multibilayers and in a single bilayer, there is coexistence in quasi equal proportions of alpha-helix and antiparallel beta-sheets of FP23 at low peptide content (Ri=100, 200) while antiparallel beta-sheets are predominant at high FP23 concentration (Ri=50). In (multi)bilayer systems, evaluation of dichroic ratios and sprectral simulations show that both the alpha-helix and the antiparallel beta-sheets are tilted at diluted FP23 concentrations (tilt angle of alpha-helix with respect to the normal of the interface=36.5+/-3.0 degrees for FP23 in multibilayers of DOPC/Chol/DOPE/DOPG at Ri=200 and 39.0+/-5.0 degrees in a single bilayer of DMPC at Ri=100 and tilt angle of the beta-sheets=36.0+/-2.0 degrees for the beta-sheets in multibilayers and 30.0+/-2.0 degrees in the lipid bilayer). In parallel, the FP23 induces an increase of the lipid chain disorder which shows both by an increase of the methylene stretching frequencies and an increase of the average C-C-C angle of the acyl chains. At high FP23 content (Ri=50), the antiparallel beta-sheets induce a complete disorganization of the lipid chains in (multi)bilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2005.07.008DOI Listing

Publication Analysis

Top Keywords

antiparallel beta-sheets
20
structure orientation
12
fp23
12
inserted lipid
12
alpha-helix antiparallel
12
lipid
8
brewster angle
8
angle microscopy
8
air/water interface
8
monolayer multibilayers
8

Similar Publications

Identification and functional analysis of a novel L-type lectin (NdLTL1) from Neocaridina denticulata sinensis.

Fish Shellfish Immunol

January 2025

School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China. Electronic address:

This study investigates an L-type lectin, NdLTL1, derived from Neocaridina denticulata sinensis, emphasizing its role in immune defense through carbohydrate binding and bacterial agglutination. Bioinformatics analysis identified 179 lectin sequences, leading to subsequent investigations into the structure and function of NdLTL1. The open reading frame (ORF) of NdLTL1 spans 966 bp and encodes a protein consisting of 321 amino acids (36.

View Article and Find Full Text PDF

Amycolatopsis sp. BJA-103 was isolated for its exceptional feather-degradation capability, leading to the purification, cloning, and heterologous expression of the keratinase enzyme, KER0199. Sequence analysis places KER0199 within the S8 protease family, revealing <60 % sequence similarity to known proteases.

View Article and Find Full Text PDF

Enzymatic hydrolysis prior to fibrillation could promote the formation of soy protein isolate (SPI) nanofibrils. However, the large amount of resulting insoluble soy protein hydrolysates (ISPH) demonstrated significantly limited fibrillation capacity. In this study, the modification of ISPH through the combination of pH and ultrasound treatment significantly enhanced their solubility and further promoted fibrillation capacity.

View Article and Find Full Text PDF

DFT-based calculation of vibrational sum frequency generation spectral features of crystalline β-sheets in silk: Polarization and azimuth angle dependences.

J Chem Phys

December 2024

Department of Chemical Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Sum frequency generation (SFG) necessitates both noncentrosymmetry and coherence over multiple length scales. These requirements make vibrational SFG spectroscopy capable of probing structural information of noncentrosymmetric organic crystals interspersed in polymeric matrices and their three-dimensional spatial distributions within the matrices without spectral interferences from the amorphous components. However, this analysis is not as straightforward as simple vibrational spectroscopy or scattering experiments; it requires knowing the molecular hyperpolarizability of SFG-active vibrational modes and their interplay within the coherence length.

View Article and Find Full Text PDF

HIV, like other membrane-enveloped viruses, has protein spikes that include a fusion peptide (Fp) segment that binds the host cell membrane and plays a critical role in fusion (joining) viral and cell membranes. The HIV Fp is the ~23 N-terminal residues of the gp41 spike protein. Fp adopts intermolecular antiparallel β sheet structure when lipid fraction cholesterol ≈0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!