Mass-dependent signaling between G protein coupled receptors.

Cell Signal

Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave. (mail code 868), Chicago, IL 60612, USA.

Published: April 2006

The present study provides evidence that G protein coupled receptor (GPCR) signaling pathways participate in an interactive signaling network governed by the principles of mass action. Using an inducible thromboxane A2 receptor (TPR)/platelet activating factor receptor (PAFR) co-expressing cell model, TPR or PAFR expression was independently up-regulated. Immunostaining and radioligand binding experiments demonstrated that this receptor up-regulation resulted in increased GPCR:G protein mass ratios. This increase in mass ratio impacted both TPR and PAFR ligand affinity. Specifically, up-regulating TPR expression not only decreased TPR ligand affinity, but also decreased the ligand affinity of PAFRs. A similar effect on ligand affinities was observed when PAFRs were up-regulated. In addition, increasing the GPCR:G protein mass ratio for TPRs led to desensitization of the calcium mobilization response to PAFR activation, and increasing PAFR mass desensitized the TPR-mediated calcium response. Finally, it was observed that an increased TPR:G protein mass ratio was associated with a shift in the TPR signaling response, and revealed an additional TPR signaling pathway through G(S). Collectively, these results describe a novel mechanism, i.e., mass-dependent GPCR signaling, by which cells can modulate their GPCR signaling pathways and signaling priorities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2005.06.011DOI Listing

Publication Analysis

Top Keywords

gpcr signaling
12
protein mass
12
mass ratio
12
ligand affinity
12
protein coupled
8
signaling pathways
8
tpr pafr
8
gpcrg protein
8
tpr signaling
8
signaling
7

Similar Publications

Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.

View Article and Find Full Text PDF

The motor symptoms of Parkinson's Disease are attributed to the degeneration of dopamine neurons in the substantia nigra pars compacta (SNc). Previous work in the MCI-Park mouse model has suggested that the loss of somatodendritic dopamine transmission predicts the development of motor deficits. In the current study, brain slices from MCI-Park mice were used to investigate dopamine signaling in the SNc prior to and through the onset of movement deficits.

View Article and Find Full Text PDF

Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex.

Nat Commun

January 2025

Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.

View Article and Find Full Text PDF

Apolipoprotein A-IV and its derived peptide, T55-121, improve glycemic control and increase energy expenditure.

Life Metab

August 2024

National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

It is crucial to understand the glucose control within our bodies. Bariatric/metabolic surgeries, including laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB), provide an avenue for exploring the potential key factors involved in maintaining glucose homeostasis since these surgeries have shown promising results in improving glycemic control among patients with severe type 2 diabetes (T2D). For the first time, a markedly altered population of serum proteins in patients after LSG was discovered and analyzed through proteomics.

View Article and Find Full Text PDF

Structural and evolutionary insights into the functioning of glycoprotein hormones and their receptors.

Andrology

January 2025

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.

The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!