In the present study, we examined the effects of extremely low-frequency (ELF) electromagnetic fields on morphine-induced conditioned place preferences in rats. During the conditioning phase (12 days), three groups of rats were placed in a sensory cue-defined environment paired with morphine (10mg/kg, i.p.) following exposure to either 20 Hz (1.80 mT) or 50 Hz (2.20 mT) or sham electromagnetic fields for 60 min/day, respectively, and were placed in another sensory cue-defined environment paired with physiological saline (1 ml/kg, i.p.) without exposure to electromagnetic fields. After finishing 12 days of conditioning, preference tests for the morphine-paired place were performed during a 10-day withdrawal period. The exposure to electromagnetic fields substantially potentiated morphine-induced place preferences in rodents, suggesting that ELF electromagnetic fields can increase the propensity for morphine-induced conditioned behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2005.08.001 | DOI Listing |
Nanomicro Lett
December 2024
School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.
View Article and Find Full Text PDFElectromagn Biol Med
December 2024
Department of Electrical and Electronics Engineering, Recep Tayyip Erdoğan University, Rize, Türkiye.
Due to the increase in data rate in mobile communication and the widespread use of mobile internet, electromagnetic communication systems are increasing daily. This situation causes increases in the use of more mobile communication devices and environmental non-ionizing Electromagnetic Field (EMF) levels. The rise of bee deaths and colony losses in beekeeping parallel to the increase of the EMF sources cause the concept of "electromagnetic pollution" to be considered among the reasons.
View Article and Find Full Text PDFFront Netw Physiol
December 2024
Department of Physics, University of Alberta, Edmonton, AB, Canada.
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology.
View Article and Find Full Text PDFIn this Letter, we have proposed an all-optical scheme for chiral particle separation with a microcylinder-pair system (MCPS) with a micrometer scale channel, applicable in microfluidic environments. By illuminating the MCPS with two counter-incident plane waves of orthogonal polarization, the electromagnetic chirality gradient can be generated. The MCPS can also enhance chirality-dependent lateral optical forces of the coupled fields so that the setup can shift trapping equilibrium positions for opposite-handedness nanoparticles and make the sideways motion observable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!