The watersheds method is a powerful segmentation tool developed in mathematical morphology. In order to prevent its over-segmentation, in this paper, we present a new strategy to obtain robust markers for segmentation of blood vessels from malignant tumors. For this purpose, we introduced a new algorithm. We propose a two-stage segmentation strategy which involves: (1) extracting an approximate region containing the blood vessel and part of the background near the blood vessel, and (2) segmenting the blood vessel from the background within this region. The approach effectively reduces the influence of peripheral background intensities on the extraction of a blood vessel region. In this application the important information to be extracted from images is only the number of blood vessels present in the images. The proposed strategy was tested on manual segmentation, where segmentation errors less than 10% for false positives and 0% for false negatives are observed. It is demonstrated by extensive experimentation, by using real images, that the proposed strategy was suitable for our application in the environment of a personal computer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2004.06.003 | DOI Listing |
Acta Bioeng Biomech
June 2024
4Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Wrocław, Poland.
: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Geriatric Medicine, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Objective: To develop a predictive model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) through radiomics analysis, integrating data from both enhanced computed tomography (CT) and magnetic resonance imaging (MRI).
Methods: A retrospective analysis was conducted on 93 HCC patients who underwent partial hepatectomy. The gold standard for MVI was based on the histopathological diagnosis of the tissue.
FASEB J
January 2025
Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Adhiparasakthi Dental College and Hospital, Melmaruvathur, India.
Background: Angiogenesis, the formation of new blood vessels from preexisting ones via capillary sprouting, is a crucial process in tumor growth and metastasis. As a tumor's angiogenic capacity increases, its microvasculature, measured by micro vessel density (MVD), also increases. This study aims to evaluate the expression of Vascular Endothelial Growth Factor (VEGF) and CD34 in oral epithelial dysplasia and oral squamous cell carcinoma through immunohistochemical methods.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!