The mechanism of medroxyprogesterone acetate (MPA)-induced cell proliferation in human breast cancer cells remains elusive. We examined the mechanism by which MPA affects the cyclin D1 expression in progesterone receptor (PR)-positive T47D human breast cancer cells. MPA (10 nM) treatment for 48 h induced proliferation of the cells (1.6-fold induction). MPA induced cyclin D1 expression (3.3-fold induction), and RU486, a selective PR antagonist, blocked the MPA-induced cell proliferation and cyclin D1 expression (23% inhibition). MPA increased both the protein level (2.2-fold induction) and promoter activity (2.7-fold induction) of cyclin D1 in MCF-7 cells transfected with PRB but not with PRA. Although MPA transcriptionally activated cyclin D1 expression, cyclin D1 promoter does not have progesterone-responsive element-related sequence. We further examined the mechanism for the regulation of the cyclin D1 expression. Because the cyclin D1 promoter contains three putative nuclear factor-kappaB (NFkappaB)-binding motifs and NFkappaB is a substrate of Akt, we investigated the effect of the phosphatidylinositol 3-kinase (PI3K)/Akt/NFkappaB cascade on the responses of cyclin D1 to MPA. MPA induced the transient phosphorylation of Akt (2.7-fold induction at 5 min), and treatment with PI3K inhibitor (wortmannin) attenuated the MPA-induced up-regulation of cyclin D1 expression (40% inhibition) and cell proliferation (40% inhibition). MPA also induced phosphorylation of inhibitor of NFkappaBalpha (IkappaBalpha) (2.3-fold induction), and treatment with wortmannin attenuated the MPA-induced IkappaBalpha phosphorylation (60% inhibition). Treatment with an IkappaBalpha phosphorylation inhibitor (BAY 11-7085) or a specific NFkappaB nuclear translocation inhibitor (SN-50) attenuated the MPA-induced up-regulation of both cyclin D1 expression (80 and 50% inhibition, respectively) and cell proliferation (55 and 34% inhibition, respectively). Because MPA induced a transient phosphorylation of Akt and the cyclin D1 promoter contains no progesterone-responsive element-related sequence, the MPA-induced cell proliferation through PRB by up-regulation of cyclin D1 expression via the PI3K/Akt/NFkappaB cascade may be a nongenomic mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2004-1535DOI Listing

Publication Analysis

Top Keywords

cyclin expression
36
cell proliferation
24
up-regulation cyclin
16
mpa induced
16
cyclin
14
human breast
12
breast cancer
12
cancer cells
12
mpa-induced cell
12
inhibition mpa
12

Similar Publications

Breast cancer represents the most common type of cancer in females worldwide. The survival rates for breast cancer patients have been increasing since 1990. However, in 2023 breast cancer is still the second most common cause of malignancy-associated death in women.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.

View Article and Find Full Text PDF

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.

View Article and Find Full Text PDF

Hepatocellular carcinoma(HCC) has a high mortality and morbidity rate and seriously jeopardizes human life. Chemicals and chemotherapeutic agents have been experiencing problems such as side effects and drug resistance in the treatment of HCC, which cannot meet the needs of clinical treatment. Therefore, finding novel low-toxicity and high-efficiency anti-hepatocellular carcinoma drugs and exploring their mechanisms of action have become the current problems to be solved in the treatment of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!