Fatigue damage in bone occurs in the form of microcracks and plays an important role in the initiation of bone remodelling and in the occurrence of stress and fragility fractures. The process by which fatigue microcracks in bone initiate and grow remains poorly understood. The aim of this study was to investigate the microscopic tissue changes associated with microcracks during crack propagation in cortical bone and the influence of bone microstructure on this process. Cracks were mechanically initiated and extended longitudinally in a two-stage process, in six bovine tibial compact tension specimens. The sequential application of chelating fluorochromes, xylenol orange followed by calcein, allowed the nature of microcrack damage at different stages of propagation to be monitored by laser scanning confocal microscopy. Specimens were imaged at a focal plane 20 microm below the samples' surface, or as a series of z-plane images collected to a maximal depth of 200 microm and 35 microm for x 4 and x 40 objectives, respectively. Z-series image stacks were then reconstructed using Amira 3.0 software. Confocal images showed that xylenol orange localised to the crack surface and did not migrate into the crack's extension following further mechanical propagation. Similarly, calcein stained the extended crack's surface and displayed minimal incorporation within the original crack. High resolution confocal images provided a detailed visual description of the crack's 'process zone', and 'process zone wake'. Additionally, an 'interface region' was revealed, displaying a clear distinction between the end of the first crack and the commencement of its extension. Confocal images of the interface region demonstrated that the extended crack forms a continuum with the pre-existing crack and propagates through the former process zone. Upon viewing the three-dimensional reconstructed images, we found evidence suggesting a submicroscopic tissue involvement in fatigue damage, in addition to the potential influence of vascular canals and osteocyte lacunae on its propagation through the bone matrix. This study has provided new insights into the process of fatigue damage growth in bone and factors influencing its progression through the bone matrix. Confocal microscopy in combination with sequential chelating fluorochrome labelling is a valuable technique for monitoring microcrack growth in bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09243860500096206 | DOI Listing |
Rheumatol Int
January 2025
Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Kraków, Kraków, Poland.
Systemic lupus erythematosus (SLE) is a multisystem autoimmune rheumatic disease (ARD) that results from the dysregulation of multiple innate and adaptive immune pathways. Late-onset SLE (Lo-SLE) is the term used when the disease is first diagnosed after 50-65 years, though the standard age cut-off remains undefined. Defining "late-onset" as lupus with onset after 50 years is more biologically plausible as this roughly corresponds to the age of menopause.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
The objectives of this case series study were to test whether an elastic back exosuit could increase a wearer's endurance when lifting heavy objects and to assess whether lifting more cancels out the exosuit's risk reduction benefits. We found that 88% of participants increased their lifting repetitions while wearing an exosuit, with endurance increases ranging from 28 to 75%. We then used these empirical data with an ergonomic assessment model based on fatigue failure principles to estimate the effects on cumulative back damage (an indicator of low back disorder risk) when an exosuit is worn and more lifts are performed.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112026, Taiwan.
Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.
View Article and Find Full Text PDFACR Open Rheumatol
January 2025
Miami University, Miami, Florida.
Objective: This study aimed to expand the understanding of the patient with psoriatic arthritis (PsA) experience and to compare/contrast patient and clinician prioritization of PsA dimensions.
Methods: We conducted four patients with PsA focus groups across three US rheumatology practices using mixed methods to identify attributes of PsA important to patients. Combination with extant attributes of PsA identified by a steering committee created a comprehensive list of attributes.
Sensors (Basel)
January 2025
Department of Electrical Engineering, Technical University Eindhoven, 5612 AZ Eindhoven, The Netherlands.
The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!