Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Abeta in distal axons.

Neurobiol Aging

Centre for Alzheimer and Neurodegenerative Research, Signal Transduction Research Group and Department of Pharmacology, 928 Medical Science Building, Faculty of Medicine, University of Alberta, Edmonton, Alta., Canada T6G 2H7.

Published: September 2006

The goal of this study was to assess if neurons exposed to amyloid-beta peptide (Abeta) exclusively in distal axons, undergo apoptosis. This is relevant to the loss of cholinergic neurons in Alzheimer's disease. Using a three-compartmented culture system for rat sympathetic neurons, we demonstrate that exposure of axons to Abeta1-42 activates an independent destruction program in axons, which leads to nuclear apoptosis. Abeta-induced axonal degeneration does not involve local caspase activation, but causes caspase activation in cell bodies. Accordingly, inhibition of caspase activation blocks Abeta-induced apoptosis but not axonal degeneration. In agreement with previous suggestions that disruption of nerve growth factor (NGF)-mediated signaling might contribute to the loss of cholinergic neurons, we found that provision of NGF to cell bodies protects sympathetic neurons from Abeta-induced apoptosis. However, our data indicate that Abeta-induced axonal degeneration follows a mechanism different than that activated by NGF withdrawal. Only Abeta-induced axonal degeneration is prevented by the calpain inhibitor calpastatin and is insensitive to the inhibitor of the ubiquitin-proteasome system MG132. Importantly, inhibition of Abeta-induced axonal degeneration by calpastatin prevents nuclear apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2005.06.007DOI Listing

Publication Analysis

Top Keywords

axonal degeneration
24
abeta-induced axonal
16
caspase activation
12
neurons exposed
8
distal axons
8
loss cholinergic
8
cholinergic neurons
8
sympathetic neurons
8
nuclear apoptosis
8
cell bodies
8

Similar Publications

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Peripheral neuropathy: from guidelines to clinical practise.

Curr Opin Oncol

January 2025

Department of Hematology, Oncology and Palliative Medicine, Ernst von Bergmann Hospital Potsdam, Potsdam.

Purpose Of Review: Chemotherapy-induced peripheral neuropathy (CIPN) is a substantial adverse effect of anticancer therapy. No effective preventive strategies are established in clinical routine, although some forms of cryotherapy or compression therapy seem to be promising. CIPN is difficult to grade objectively and has mostly relied on a clinician- or patient-based rating that is subjective and not easily reproducible.

View Article and Find Full Text PDF

Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects.

View Article and Find Full Text PDF

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Previous research has revealed patterns of brain atrophy in subjective cognitive decline, a potential preclinical stage of Alzheimer's disease. However, the involvement of myelin content and microstructural alterations in subjective cognitive decline has not previously been investigated. This study included three groups of participants recruited from the Compostela Aging Study project: 53 cognitively unimpaired adults, 16 individuals with subjective cognitive decline and hippocampal atrophy and 70 with subjective cognitive decline and no hippocampal atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!