Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In heterologous cells expressing the dopamine transporter (DAT), simultaneous elevation of intracellular Na(+) and depolarization of the membrane with gramicidin reduced the potency of various DAT substrates, including dopamine, d-amphetamine, beta-phenethylamine, p-tyramine, and MPP(+), in inhibiting binding of the cocaine analog [(3)H]CFT, with the greatest reduction observed for d-amphetamine. In rat striatal synaptosomes, gramicidin exerted similar effects; in addition, the potency of d-amphetamine was reduced by the Na(+)-channel activator veratridine. The latter effect was counteracted by the Na(+)-channel blocker tetrodotoxin. In broken membranes, where, as the situation with gramicidin, both sides of the non-polarized membrane were exposed to 130 mM Na(+), gramicidin was ineffective. Dopamine had a potency for membrane preparations that was not significantly different from that for control cells or synaptosomes, while other substrates had potencies for membrane preparations that were reduced to a level similar to those observed in gramicidin-treated cells or synaptosomes. These results suggest that diminishing Na(+) gradient and membrane potential may convert DAT to a conformational state that dopamine could easily bind to when gaining free access to its intracellular portion. In contrast, non-dopamine substrates may not be able to readily interact with this state from either side of the membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2005.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!