The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization.

Virol J

Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201, USA.

Published: August 2005

The entry of the SARS coronavirus (SCV) into cells is initiated by binding of its spike envelope glycoprotein (S) to a receptor, ACE2. We and others identified the receptor-binding domain (RBD) by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site), but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357). Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa) suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three) is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319-518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495) that significantly reduced binding to ACE2, and one residue (D393) that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues--by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted) suggested the existence of two hot spots on the S RBD surface, R426 and N473, which are likely to contribute significant portion of the binding energy. The finding that most of the mutations (23 out of 34 including glycosylation sites) do not affect the RBD binding function indicates possible mechanisms for evasion of immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1236967PMC
http://dx.doi.org/10.1186/1743-422X-2-73DOI Listing

Publication Analysis

Top Keywords

glycosylation sites
24
potential glycosylation
16
residue 318
12
glycosylation
10
sars coronavirus
8
glycoprotein receptor
8
binding
8
receptor ace2
8
318 potential
8
sites residues
8

Similar Publications

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) develops and advances because of the accumulation of somatic mutations located in orthosteric and allosteric areas. However, the biological effects of allosteric driver mutations during tumorigenesis are mostly unknown. Here, we mapped somatic mutations generated from 10 tumor-normal matched HNSCC samples into allosteric sites to prioritize the mutated allosteric proteins via whole-exome sequencing and AlloDriver, identifying the specific mutation H351Q in β-glucuronidase (GUSB), a lysosomal enzyme, as a novel allosteric driver mutation, which considerably encouraged HNSCC progression both in vitro and in vivo.

View Article and Find Full Text PDF

The ongoing panzootic of highly pathogenic avian influenza (HPAI) A(H5) viruses is the largest in history, with unprecedented transmission to multiple mammalian species. Avian influenza A viruses of the H5 subtype circulate globally among birds and are classified into distinct clades based on their hemagglutinin (HA) genetic sequences. Thus, the ability to accurately and rapidly assign clades to newly sequenced isolates is key to surveillance and outbreak response.

View Article and Find Full Text PDF

Phylogenetic and molecular analysis of hemagglutinin gene and Fsp-coding region of canine distemper virus: Insight into novel vaccine development.

Comp Immunol Microbiol Infect Dis

January 2025

Graduated Student in doctor of Veterinary Medicine, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran. Electronic address:

Canine distemper virus (CDV) causes a highly contagious and lethal disease in a vast range of carnivorous and non-carnivorous species. The study aimed to genetically investigate the hemagglutinin (H) gene and Fsp-coding region of CDV isolates from vaccinated dogs. Phylogenetic analysis of the H gene and Fsp-coding region showed that our viruses belonged to the Arctic-like lineage which was distinct from two commonly used vaccine strains (America-1 lineage strains) in Iran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!