Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD-/-) by gene targeting in embryonic stem (ES) cells. The MCAD-/- mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD-/- mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD-/- pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189074 | PMC |
http://dx.doi.org/10.1371/journal.pgen.0010023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!