Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection to incorporate Gibberella ear rot resistance into commercial corn cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1139/g05-014DOI Listing

Publication Analysis

Top Keywords

ear rot
36
gibberella ear
28
rot resistance
12
resistance
9
ear
9
rot
9
resistance gibberella
8
rot corn
8
fusarium graminearum
8
linkage group
8

Similar Publications

This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.

View Article and Find Full Text PDF

Zea mays is the second most popular cereal crop in Panama. Its production is intended for human and livestock consumption but is threatened by several diseases. We report the occurrence of Fusarium ear rot, a disease that has affected corn production in a specific region of Panama.

View Article and Find Full Text PDF

is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities with FHB.

View Article and Find Full Text PDF

Fusarium graminearum species complex (FGSC) includes at least fifteen species which are some of the most significant fungi that infect maize in temperate areas (Sarver et al. 2011). Agroecological conditions in Serbia are suitable for the development of infection by members of FGSC and therefore during the period of 1993-2010, maize samples collected from northern Serbia (46°5'55" N, 19°39'47" E) showed typical symptoms of gibberella ear rot.

View Article and Find Full Text PDF

First report of causing Diplodia leaf streak disease of maize in Yunnan Province, China.

Plant Dis

December 2024

Yunnan Agricultural University College of Plant Protection, , Yunnan Agricultural University, Fengyuan Road 95, Kunming, kunming, China, 650201.

Maize (Zea mays. L) is cultivated globally as a staple food crop, animal feed, and biofuel. However, persistent diseases in maize have led significant yield losses and a decline in grain quality (Yang et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!