The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of approximately 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature03944DOI Listing

Publication Analysis

Top Keywords

oceanic crust
12
moho transition
12
transition zone
12
magma lenses
8
magma body
8
crust
6
frozen magma
4
lenses oceanic
4
crust earth's
4
earth's oceanic
4

Similar Publications

The aquifer in the subseafloor igneous basement is a massive, continuous microbial substrate, yet sparingly little is known about life in this habitat. The work to date has focused largely on describing microbial diversity in the young basement (<10 Ma), where the basaltic crust is still porous and fluid flow through it is active. Here, we test the hypothesis that microbial life exists in subseafloor basement >65 Ma using samples collected from the Louisville Seamount Chain via seafloor drilling.

View Article and Find Full Text PDF

Yellowstone Caldera is one of the largest volcanic systems on Earth, hosting three major caldera-forming eruptions in the past two million years, interspersed with periods of less explosive, smaller-volume eruptions. Caldera-forming eruptions at Yellowstone are sourced by rhyolitic melts stored within the mid- to upper crust. Seismic tomography studies have suggested that a broad region of rhyolitic melt extends beneath Yellowstone Caldera, with an estimated melt volume that is one to four times greater than the eruptive volume of the largest past caldera-forming eruption, and an estimated melt fraction of 6-28 per cent.

View Article and Find Full Text PDF

Apatite is widely used as an indicator mineral to reflect the characteristics and petrogenesis of host magma. In this study, we present apatite geochemical and in-situ Sr-Nd isotopic data of monzogranite, granodiorite and dioritic enclave in the eastern Songnen-Zhangguangcai Range Massif, aiming to fingerprinting their petrogenesis and magmatic evolution processes. Based on apatite textures and geochemistry characteristics, the apatites were categorized into two distinct groups.

View Article and Find Full Text PDF

On the equilibrium limit of liquid stability in pressurized aqueous systems.

Nat Commun

December 2024

J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA.

Phase stability, and the limits thereof, are a central concern of materials thermodynamics. However, the temperature limits of equilibrium liquid stability in chemical systems have only been widely characterized under constant (typically atmospheric) pressure conditions, whereunder these limits are represented by the eutectic. At higher pressures, the eutectic will shift in both temperature and chemical composition, opening a wide thermodynamic parameter space over which the absolute limit of liquid stability, i.

View Article and Find Full Text PDF

Cretaceous coastal mountain building and potential impacts on climate change in East Asia.

Sci Adv

December 2024

Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China.

Crustal thickness and elevation variations control mountain building and climate change at convergent margins. As an archetypal Andean-type convergent margin, eastern Asia preserves voluminous magmas ideal for quantifying these processes and their impacts on climate. Here, we use Sr/Y and Ce/Y proxies to show that the crust experienced alternating thickening and thinning during the Late Mesozoic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!