A soluble protein with a molecular mass of 55 kDa has been purified from etiolated pea stem mitochondria. The protein exhibits a Mg2+-requiring PPiase activity, with an optimum at pH 9.0, which is not stimulated by monovalent cations, but inhibited by F-, Ca2+, aminomethylenediphosphate and imidodiphosphate. The protein does not cross-react with polyclonal antibodies raised against vacuolar, mitochondrial or soluble PPiases, respectively. Conversely, it cross-reacts with an antibody for the alpha/beta-subunit of the ATP synthase from beef heart mitochondria. The purified protein has been analyzed by MALDI-TOF mass spectrometry and the results, covering the 30% of assigned sequence, indicate that it corresponds to the beta-subunit of the ATP synthase of pea mitochondria. It is suggested that this enzymatic protein may perform a dual function as soluble PPiase or as subunit of the more complex ATP synthase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1567-7249(03)00105-3 | DOI Listing |
Sci Rep
December 2024
Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
Biomimetic photosynthesis, which leverages nanomaterials with light-responsive capabilities, represents an innovative approach for replicating natural photosynthetic processes for green and sustainable energy conversion. In this study, a covalent-organic framework (COF)-based artificial photosynthesis system is realized through the co-assembly of adenosine triphosphate (ATP) synthase and a light-responsive proton generator onto an imine-based COF, RT-COF-1. This system demonstrates an ATP production rate of 0.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
Exposure to perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) was associated with adipogenesis. However, potential mechanisms remain to be elucidated. Herein, a 3T3-L1 adipocyte model was used to explore the dynamic changes in adipocyte differentiation (2, 4, and 8 days) under PFOA and HFPO-DA exposure.
View Article and Find Full Text PDFHeliyon
December 2024
Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia.
The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with , were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!